[arch-commits] Commit in sagemath-doc/trunk (sagemath-singular4.patch)
Antonio Rojas
arojas at archlinux.org
Tue Jan 24 13:44:39 UTC 2017
Date: Tuesday, January 24, 2017 @ 13:44:38
Author: arojas
Revision: 208836
Remove unused patch
Deleted:
sagemath-doc/trunk/sagemath-singular4.patch
--------------------------+
sagemath-singular4.patch | 3731 ---------------------------------------------
1 file changed, 3731 deletions(-)
Deleted: sagemath-singular4.patch
===================================================================
--- sagemath-singular4.patch 2017-01-24 13:42:48 UTC (rev 208835)
+++ sagemath-singular4.patch 2017-01-24 13:44:38 UTC (rev 208836)
@@ -1,3731 +0,0 @@
-diff --git a/src/bin/sage b/src/bin/sage
-index 46da103..96de4bc 100755
---- a/src/bin/sage
-+++ b/src/bin/sage
-@@ -472,7 +472,7 @@ fi
-
- if [ "$1" = '-singular' -o "$1" = '--singular' ]; then
- shift
-- exec singular "$@"
-+ exec Singular "$@"
- fi
-
- if [ "$1" = '-sqlite3' -o "$1" = '--sqlite3' ]; then
-diff --git a/src/doc/de/tutorial/interfaces.rst b/src/doc/de/tutorial/interfaces.rst
-index c452b11..037cfc3 100644
---- a/src/doc/de/tutorial/interfaces.rst
-+++ b/src/doc/de/tutorial/interfaces.rst
-@@ -197,6 +197,7 @@ Sages Singular-Schnittstelle (ohne die ``....:``):
-
- sage: R1 = singular.ring(0, '(x,y)', 'dp')
- sage: R1
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering dp
-diff --git a/src/doc/en/constructions/rings.rst b/src/doc/en/constructions/rings.rst
-index d301a38..58abf8a 100644
---- a/src/doc/en/constructions/rings.rst
-+++ b/src/doc/en/constructions/rings.rst
-@@ -56,6 +56,7 @@ Here's an example using the Singular interface:
- sage: R = singular.ring(97, '(a,b,c,d)', 'lp')
- sage: I = singular.ideal(['a+b+c+d', 'ab+ad+bc+cd', 'abc+abd+acd+bcd', 'abcd-1'])
- sage: R
-+ polynomial ring, over a field, global ordering
- // characteristic : 97
- // number of vars : 4
- // block 1 : ordering lp
-diff --git a/src/doc/en/developer/coding_in_other.rst b/src/doc/en/developer/coding_in_other.rst
-index 6432644..f40cbc3 100644
---- a/src/doc/en/developer/coding_in_other.rst
-+++ b/src/doc/en/developer/coding_in_other.rst
-@@ -401,6 +401,7 @@ interface to Singular::
-
- sage: singular.LIB("brnoeth.lib")
- sage: singular.ring(5,'(x,y)','lp')
-+ polynomial ring, over a field, global ordering
- // characteristic : 5
- // number of vars : 2
- // block 1 : ordering lp
-diff --git a/src/doc/en/tutorial/interfaces.rst b/src/doc/en/tutorial/interfaces.rst
-index eeb98ed..3cd29da 100644
---- a/src/doc/en/tutorial/interfaces.rst
-+++ b/src/doc/en/tutorial/interfaces.rst
-@@ -196,6 +196,7 @@ Singular (do not type the ``....:``):
-
- sage: R1 = singular.ring(0, '(x,y)', 'dp')
- sage: R1
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering dp
-diff --git a/src/doc/fr/tutorial/interfaces.rst b/src/doc/fr/tutorial/interfaces.rst
-index a1fc5cf..6d4dde9 100644
---- a/src/doc/fr/tutorial/interfaces.rst
-+++ b/src/doc/fr/tutorial/interfaces.rst
-@@ -198,6 +198,7 @@ fournie par Sage (n'entrez pas les ``....:``) :
-
- sage: R1 = singular.ring(0, '(x,y)', 'dp')
- sage: R1
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering dp
-diff --git a/src/doc/ja/tutorial/interfaces.rst b/src/doc/ja/tutorial/interfaces.rst
-index 99158bb..18e83e9 100644
---- a/src/doc/ja/tutorial/interfaces.rst
-+++ b/src/doc/ja/tutorial/interfaces.rst
-@@ -172,6 +172,7 @@ Singularは,グレブナー基底,多変数多項式のgcd,平面曲線の
-
- sage: R1 = singular.ring(0, '(x,y)', 'dp')
- sage: R1
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering dp
-diff --git a/src/doc/pt/tutorial/interfaces.rst b/src/doc/pt/tutorial/interfaces.rst
-index 7feea55..4aabfa6 100644
---- a/src/doc/pt/tutorial/interfaces.rst
-+++ b/src/doc/pt/tutorial/interfaces.rst
-@@ -196,6 +196,7 @@ digite ``...``):
-
- sage: R1 = singular.ring(0, '(x,y)', 'dp')
- sage: R1
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering dp
-diff --git a/src/doc/ru/tutorial/interfaces.rst b/src/doc/ru/tutorial/interfaces.rst
-index 4be09f9..41b04ca 100644
---- a/src/doc/ru/tutorial/interfaces.rst
-+++ b/src/doc/ru/tutorial/interfaces.rst
-@@ -190,6 +190,7 @@ Singular предоставляет массивную и продуманную
-
- sage: R1 = singular.ring(0, '(x,y)', 'dp')
- sage: R1
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering dp
-diff --git a/src/module_list.py b/src/module_list.py
-index 0dee41b..ec842b7 100644
---- a/src/module_list.py
-+++ b/src/module_list.py
-@@ -58,6 +58,12 @@ linbox_libs = list(linbox_pc['libraries'])
- linbox_library_dirs = list(linbox_pc['library_dirs'])
- linbox_cflags = pkgconfig.cflags('linbox').split()
-
-+# Singular
-+singular_pc = pkgconfig.parse('Singular')
-+singular_libs = list(singular_pc['libraries'])
-+singular_library_dirs = list(singular_pc['library_dirs'])
-+singular_cflags = pkgconfig.cflags('Singular').split()
-+
- # PNG image library
- png_pc = pkgconfig.parse('libpng')
- png_libs = list(png_pc['libraries'])
-@@ -88,6 +94,9 @@ aliases = dict(
- LINBOX_CFLAGS=linbox_cflags,
- LINBOX_LIBRARIES=linbox_libs,
- LINBOX_LIBDIR=linbox_library_dirs,
-+ SINGULAR_CFLAGS=singular_cflags,
-+ SINGULAR_LIBRARIES=singular_libs,
-+ SINGULAR_LIBDIR=singular_library_dirs
- )
-
- #########################################################
-@@ -112,12 +121,6 @@ except ValueError:
- pass
-
- #########################################################
--### Singular
--#########################################################
--
--singular_libs = ['singular', 'flint', 'ntl', 'gmpxx', 'gmp', 'readline', 'm']
--
--#########################################################
- ### Library order
- #########################################################
-
-@@ -130,8 +133,8 @@ singular_libs = ['singular', 'flint', 'ntl', 'gmpxx', 'gmp', 'readline', 'm']
- # listed here will be added at the end of the list (without changing
- # their relative order). There is one exception: stdc++ is always put
- # at the very end of the list.
--library_order_list = [
-- "singular", "ec", "ecm",
-+library_order_list = singular_libs + [
-+ "ec", "ecm",
- ] + linbox_libs + gsl_libs + [
- "pari", "flint", "ratpoints", "ecl", "glpk", "ppl",
- "arb", "mpfi", "mpfr", "mpc", "gmp", "gmpxx",
-@@ -190,20 +193,7 @@ ext_modules = [
- language='c++',
- libraries = ["flint", "gmp", "gmpxx", "m", "ntl"]),
-
-- Extension('sage.algebras.letterplace.free_algebra_letterplace',
-- sources = ['sage/algebras/letterplace/free_algebra_letterplace.pyx'],
-- libraries = singular_libs,
-- language="c++"),
--
-- Extension('sage.algebras.letterplace.free_algebra_element_letterplace',
-- sources = ['sage/algebras/letterplace/free_algebra_element_letterplace.pyx'],
-- libraries = singular_libs,
-- language="c++"),
--
-- Extension('sage.algebras.letterplace.letterplace_ideal',
-- sources = ['sage/algebras/letterplace/letterplace_ideal.pyx'],
-- libraries = singular_libs,
-- language="c++"),
-+ Extension('*', sources = ['sage/algebras/letterplace/*.pyx']),
-
- Extension('sage.algebras.quatalg.quaternion_algebra_cython',
- sources = ['sage/algebras/quatalg/quaternion_algebra_cython.pyx'],
-@@ -675,35 +665,7 @@ ext_modules = [
- sources = ['sage/libs/readline.pyx'],
- libraries = ['readline']),
-
-- Extension('sage.libs.singular.singular',
-- sources = ['sage/libs/singular/singular.pyx'],
-- libraries = singular_libs,
-- language="c++"),
--
-- Extension('sage.libs.singular.polynomial',
-- sources = ['sage/libs/singular/polynomial.pyx'],
-- libraries = singular_libs,
-- language="c++"),
--
-- Extension('sage.libs.singular.ring',
-- sources = ['sage/libs/singular/ring.pyx'],
-- libraries = singular_libs,
-- language="c++"),
--
-- Extension('sage.libs.singular.groebner_strategy',
-- sources = ['sage/libs/singular/groebner_strategy.pyx'],
-- libraries = singular_libs,
-- language="c++"),
--
-- Extension('sage.libs.singular.function',
-- sources = ['sage/libs/singular/function.pyx'],
-- libraries = singular_libs,
-- language="c++"),
--
-- Extension('sage.libs.singular.option',
-- sources = ['sage/libs/singular/option.pyx'],
-- libraries = singular_libs,
-- language="c++"),
-+ Extension('*', sources = ['sage/libs/singular/*.pyx']),
-
- Extension('sage.libs.symmetrica.symmetrica',
- sources = ["sage/libs/symmetrica/symmetrica.pyx"],
-@@ -970,9 +932,7 @@ ext_modules = [
- sources = ['sage/matrix/matrix_modn_sparse.pyx']),
-
- Extension('sage.matrix.matrix_mpolynomial_dense',
-- sources = ['sage/matrix/matrix_mpolynomial_dense.pyx'],
-- libraries = singular_libs,
-- language="c++"),
-+ sources = ['sage/matrix/matrix_mpolynomial_dense.pyx']),
-
- Extension('sage.matrix.matrix_rational_dense',
- sources = ['sage/matrix/matrix_rational_dense.pyx'],
-@@ -1569,19 +1529,13 @@ ext_modules = [
- sources = ['sage/rings/polynomial/multi_polynomial.pyx']),
-
- Extension('sage.rings.polynomial.multi_polynomial_ideal_libsingular',
-- sources = ['sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx'],
-- libraries = singular_libs,
-- language="c++"),
-+ sources = ['sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx']),
-
- Extension('sage.rings.polynomial.plural',
-- sources = ['sage/rings/polynomial/plural.pyx'],
-- libraries = ['m', 'readline', 'singular', 'givaro', 'gmpxx', 'gmp'],
-- language="c++"),
-+ sources = ['sage/rings/polynomial/plural.pyx']),
-
- Extension('sage.rings.polynomial.multi_polynomial_libsingular',
-- sources = ['sage/rings/polynomial/multi_polynomial_libsingular.pyx'],
-- libraries = singular_libs,
-- language="c++"),
-+ sources = ['sage/rings/polynomial/multi_polynomial_libsingular.pyx']),
-
- Extension('sage.rings.polynomial.multi_polynomial_ring_generic',
- sources = ['sage/rings/polynomial/multi_polynomial_ring_generic.pyx']),
-diff --git a/src/sage/arith/misc.py b/src/sage/arith/misc.py
-index a7fa5a1..c943bc5 100644
---- a/src/sage/arith/misc.py
-+++ b/src/sage/arith/misc.py
-@@ -3246,7 +3246,7 @@ def binomial(x, m, **kwds):
-
- sage: K.<x,y> = Integers(7)[]
- sage: binomial(y,3)
-- -y^3 + 3*y^2 - 2*y
-+ 6*y^3 + 3*y^2 + 5*y
- sage: binomial(y,3).parent()
- Multivariate Polynomial Ring in x, y over Ring of integers modulo 7
-
-diff --git a/src/sage/categories/pushout.py b/src/sage/categories/pushout.py
-index 60dfc3a..37a0914 100644
---- a/src/sage/categories/pushout.py
-+++ b/src/sage/categories/pushout.py
-@@ -3201,6 +3201,7 @@ class BlackBoxConstructionFunctor(ConstructionFunctor):
- sage: FG(ZZ).parent()
- Gap
- sage: FS(QQ['t'])
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-diff --git a/src/sage/interfaces/expect.py b/src/sage/interfaces/expect.py
-index f9de7d0..c86a9bd 100644
---- a/src/sage/interfaces/expect.py
-+++ b/src/sage/interfaces/expect.py
-@@ -1212,6 +1212,7 @@ If this all works, you can then make calls like:
-
- sage: R.<x> = QQ[]; f = x^3 + x + 1; g = x^3 - x - 1; r = f.resultant(g); gap(ZZ); singular(R)
- Integers
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-diff --git a/src/sage/interfaces/interface.py b/src/sage/interfaces/interface.py
-index 816acfa..95b4a91 100644
---- a/src/sage/interfaces/interface.py
-+++ b/src/sage/interfaces/interface.py
-@@ -733,6 +733,7 @@ class InterfaceElement(Element):
- PolynomialRing( Rationals, ["x"] )
- sage: S = singular.ring(0, ('x'))
- sage: loads(dumps(S))
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-diff --git a/src/sage/interfaces/singular.py b/src/sage/interfaces/singular.py
-index 5ebe7d2..0887e0c 100644
---- a/src/sage/interfaces/singular.py
-+++ b/src/sage/interfaces/singular.py
-@@ -64,6 +64,7 @@ factorization::
-
- sage: R1 = singular.ring(0, '(x,y)', 'dp')
- sage: R1
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering dp
-@@ -241,6 +242,7 @@ Groebner basis for some ideal, using Singular through Sage.
-
- sage: singular.lib('poly.lib')
- sage: singular.ring(32003, '(a,b,c,d,e,f)', 'lp')
-+ polynomial ring, over a field, global ordering
- // characteristic : 32003
- // number of vars : 6
- // block 1 : ordering lp
-@@ -611,6 +613,7 @@ class Singular(ExtraTabCompletion, Expect):
- // dimension (affine) = 0
- // degree (affine) = 8
- // ** right side is not a datum, assignment ignored
-+ ...
-
- rather than ignored
-
-@@ -995,6 +998,7 @@ class Singular(ExtraTabCompletion, Expect):
-
- sage: R = singular.ring(0, '(x,y,z)', 'dp')
- sage: R
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 3
- // block 1 : ordering dp
-@@ -1034,7 +1038,7 @@ class Singular(ExtraTabCompletion, Expect):
- sage: R = singular.ring(7, '(a,b)', 'ds')
- sage: S = singular.ring('real', '(a,b)', 'lp')
- sage: singular.new('10*a')
-- 1.000e+01*a
-+ (1.000e+01)*a
- sage: R.set_ring()
- sage: singular.new('10*a')
- 3*a
-@@ -1074,6 +1078,7 @@ class Singular(ExtraTabCompletion, Expect):
- sage: R = singular.ring(7, '(a,b)', 'ds')
- sage: S = singular.ring('real', '(a,b)', 'lp')
- sage: singular.current_ring()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0 (real)
- // number of vars : 2
- // block 1 : ordering lp
-@@ -1081,6 +1086,7 @@ class Singular(ExtraTabCompletion, Expect):
- // block 2 : ordering C
- sage: singular.set_ring(R)
- sage: singular.current_ring()
-+ polynomial ring, over a field, local/mixed ordering
- // characteristic : 7
- // number of vars : 2
- // block 1 : ordering ds
-@@ -1122,12 +1128,14 @@ class Singular(ExtraTabCompletion, Expect):
-
- sage: r = PolynomialRing(GF(127),3,'xyz', order='invlex')
- sage: r._singular_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 127
- // number of vars : 3
- // block 1 : ordering rp
- // : names x y z
- // block 2 : ordering C
- sage: singular.current_ring()
-+ polynomial ring, over a field, global ordering
- // characteristic : 127
- // number of vars : 3
- // block 1 : ordering rp
-@@ -1345,6 +1353,7 @@ class SingularElement(ExtraTabCompletion, ExpectElement):
- sage: cpQ=copy(Q)
- sage: cpQ.set_ring()
- sage: cpQ
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering dp
-@@ -1600,7 +1609,10 @@ class SingularElement(ExtraTabCompletion, ExpectElement):
- # using Singular's term order
- from sage.rings.polynomial.term_order import termorder_from_singular
- from sage.all import PolynomialRing
-- if singular.eval('typeof(basering)')=='ring':
-+ # Meanwhile Singulars quotient rings are also of 'ring' type, not 'qring' as it was in the past.
-+ # To find out if a singular ring is a quotient ring or not checking for ring type does not help
-+ # and instead of that we we check if the quotient ring is zero or not:
-+ if (singular.eval('ideal(basering)==0')=='1'):
- return PolynomialRing(BR, names=singular.eval('varstr(basering)'), order=termorder_from_singular(singular))
- P = PolynomialRing(BR, names=singular.eval('varstr(basering)'), order=termorder_from_singular(singular))
- return P.quotient(singular('ringlist(basering)[4]')._sage_(P), names=singular.eval('varstr(basering)'))
-@@ -1722,11 +1734,18 @@ class SingularElement(ExtraTabCompletion, ExpectElement):
- singular_poly_list = self.parent().eval("string(coef(%s,%s))"%(\
- self.name(),variable_str)).split(",")
-
-- if singular_poly_list == ['1','0'] :
-- return R(0)
-+ # Directly treat constants
-+ if singular_poly_list[0] in ['1', '(1.000e+00)']:
-+ return R(singular_poly_list[1])
-
- coeff_start = len(singular_poly_list) // 2
-
-+ # Singular 4 puts parentheses around floats and sign outside them
-+ charstr = self.parent().eval('charstr(basering)').split(',',1)
-+ if charstr[0] in ['real', 'complex']:
-+ for i in range(coeff_start, 2*coeff_start):
-+ singular_poly_list[i] = singular_poly_list[i].replace('(','').replace(')','')
-+
- if isinstance(R,(MPolynomialRing_polydict,QuotientRing_generic)) and (ring_is_fine or can_convert_to_singular(R)):
- # we need to lookup the index of a given variable represented
- # through a string
-@@ -1778,7 +1797,7 @@ class SingularElement(ExtraTabCompletion, ExpectElement):
- exp = int(1)
-
- if kcache is None:
-- sage_repr[exp]=k(singular_poly_list[coeff_start+i])
-+ sage_repr[exp] = k(singular_poly_list[coeff_start+i])
- else:
- elem = singular_poly_list[coeff_start+i]
- if elem not in kcache:
-@@ -1861,7 +1880,7 @@ class SingularElement(ExtraTabCompletion, ExpectElement):
- ::
-
- sage: singular.eval('ring R = integer, (x,y,z),lp')
-- '// ** redefining R **'
-+ '// ** redefining R (ring R = integer, (x,y,z),lp;)'
- sage: I = singular.ideal(['x^2','y*z','z+x'])
- sage: I.sage()
- Ideal (x^2, y*z, x + z) of Multivariate Polynomial Ring in x, y, z over Integer Ring
-@@ -1883,7 +1902,8 @@ class SingularElement(ExtraTabCompletion, ExpectElement):
- Note that the current base ring has not been changed by asking for another ring::
-
- sage: singular('basering')
-- // coeff. ring is : Integers
-+ polynomial ring, over a domain, global ordering
-+ // coeff. ring is : integer
- // number of vars : 3
- // block 1 : ordering lp
- // : names x y z
-@@ -1967,6 +1987,7 @@ class SingularElement(ExtraTabCompletion, ExpectElement):
- sage: R = singular.ring(7, '(a,b)', 'ds')
- sage: S = singular.ring('real', '(a,b)', 'lp')
- sage: singular.current_ring()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0 (real)
- // number of vars : 2
- // block 1 : ordering lp
-@@ -1974,6 +1995,7 @@ class SingularElement(ExtraTabCompletion, ExpectElement):
- // block 2 : ordering C
- sage: R.set_ring()
- sage: singular.current_ring()
-+ polynomial ring, over a field, local/mixed ordering
- // characteristic : 7
- // number of vars : 2
- // block 1 : ordering ds
-@@ -2229,6 +2251,7 @@ def reduce_load():
- By :trac:`18848`, pickling actually often works::
-
- sage: loads(dumps(singular.ring()))
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-@@ -2252,13 +2275,15 @@ def generate_docstring_dictionary():
- sage: from sage.interfaces.singular import generate_docstring_dictionary
- sage: generate_docstring_dictionary()
- """
-+ from sage.env import SAGE_LOCAL
-+
- global nodes
- global node_names
-
- nodes.clear()
- node_names.clear()
-
-- singular_docdir = os.environ["SAGE_LOCAL"]+"/share/singular/"
-+ singular_docdir = SAGE_LOCAL+"/share/singular/"
-
- new_node = re.compile("File: singular\.hlp, Node: ([^,]*),.*")
- new_lookup = re.compile("\* ([^:]*):*([^.]*)\..*")
-diff --git a/src/sage/interfaces/tests.py b/src/sage/interfaces/tests.py
-index e41f15c..af9797a 100644
---- a/src/sage/interfaces/tests.py
-+++ b/src/sage/interfaces/tests.py
-@@ -39,7 +39,7 @@ Test that write errors to stderr are handled gracefully by GAP
- 0
- sage: subprocess.call("echo syntax error | ipython", **kwds) in (0,1)
- True
-- sage: subprocess.call("echo syntax error | singular", **kwds)
-+ sage: subprocess.call("echo syntax error | Singular", **kwds)
- 0
- """
- from __future__ import print_function
-diff --git a/src/sage/libs/singular/decl.pxd b/src/sage/libs/singular/decl.pxd
-index 7a5af56..8235e9d 100644
---- a/src/sage/libs/singular/decl.pxd
-+++ b/src/sage/libs/singular/decl.pxd
-@@ -1,3 +1,8 @@
-+# distutils: extra_compile_args = SINGULAR_CFLAGS
-+# distutils: libraries = SINGULAR_LIBRARIES
-+# distutils: library_dirs = SINGULAR_LIBDIR
-+# distutils: language = c++
-+
- """
- Declarations of Singular's C/C++ Functions
-
-@@ -25,9 +30,6 @@ AUTHOR:
-
- from sage.libs.gmp.types cimport mpz_t, mpz_ptr
-
--cdef extern from "factor.h":
-- cdef int libfac_interruptflag
--
- cdef extern from "factory/factory.h":
-
- #
-@@ -45,15 +47,14 @@ cdef extern from "factory/factory.h":
- cdef int SW_USE_NTL_GCD_P
- cdef int SW_USE_NTL_SORT
-
--
--cdef extern from "libsingular.h":
-+cdef extern from "singular/Singular/libsingular.h":
-
- #
- # OPTIONS
- #
-
-- cdef unsigned int singular_options "test"
-- cdef unsigned int singular_verbose_options "verbose"
-+ cdef unsigned int singular_options "si_opt_1" # previously 'test'
-+ cdef unsigned int singular_verbose_options "si_opt_2" # previously 'verbose'
-
- # actual options
- cdef int OPT_PROT
-@@ -116,56 +117,81 @@ cdef extern from "libsingular.h":
- mpz_t n
- int s
-
-- # finite extension field elements
-+ # See singular/libpolys/coeffs/coeffs.h for documentation
-+ cdef enum n_coeffType:
-+ n_unknown
-+ n_Zp
-+ n_Q
-+ n_R
-+ n_GF
-+ n_long_R
-+ n_algExt
-+ n_transExt
-+ n_long_C
-+ n_Z
-+ n_Zn
-+ n_Znm
-+ n_Z2m
-+ n_CF
-
-- ctypedef struct napoly "polyrec"
-+ ctypedef struct ring "ip_sring"
-+ ctypedef struct AlgExtInfo
-
-- # algebraic numbers
-+ ctypedef struct n_Procs_s:
-
-- ctypedef struct lnumber "slnumber":
-- napoly *z
-- napoly *n
-- int s
-+ number* cfDiv(number *, number *, const n_Procs_s* r)
-+ number* cfAdd(number *, number *, const n_Procs_s* r) # algebraic number addition
-+ number* cfSub(number *, number *, const n_Procs_s* r)
-+ number* cfMult(number *, number *, const n_Procs_s* r) # algebraic number multiplication
-
-- ctypedef struct ring "ip_sring"
-+ number* (*cfInit)(int i, const n_Procs_s* r ) # algebraic number from int
-+ number* (*cfParameter)(int i, const n_Procs_s* r)
-+ int (*cfParDeg)(number* n, const n_Procs_s* r)
-+ int (*cfSize)(number* n, const n_Procs_s* r)
-+ int (*cfInt)(number* n, const n_Procs_s* r)
-+ int (*cdDivComp)(number* a,number* b, const n_Procs_s* r)
-+ number* (*cfGetUnit)(number* a, const n_Procs_s* r)
-+ number* (*cfExtGcd)(number* a, number* b, number* *s, number* *t , const n_Procs_s* r)
-
-- ctypedef struct n_Procs_s:
-+ void (*cfDelete)(number **, const n_Procs_s*)
-+
-+ number* (*cfInpNeg)(number* a, const n_Procs_s* r)
-+ number* (*cfInvers)(number* a, const n_Procs_s* r)
-+ number* (*cfCopy)(number* a, const n_Procs_s* r) # deep copy of algebraic number
-+ number* (*cfRePart)(number* a, const n_Procs_s* cf)
-+ number* (*cfImPart)(number* a, const n_Procs_s* cf)
-+ void (*cfWrite)(number* a, const n_Procs_s* r)
-+ void (*cfNormalize)(number* a, const n_Procs_s* r)
-
-- number* nDiv(number *, number *)
-- number* nAdd(number *, number *)
-- number* nSub(number *, number *)
-- number* nMul(number *, number *)
--
-- void (*nNew)(number* * a)
-- number* (*nInit)(int i)
-- number* (*nPar)(int i)
-- int (*nParDeg)(number* n)
-- int (*nSize)(number* n)
-- int (*n_Int)(number* n, ring *)
-- int (*nDivComp)(number* a,number* b)
-- number* (*nGetUnit)(number* a)
-- number* (*nExtGcd)(number* a, number* b, number* *s, number* *t)
--
-- number* (*nNeg)(number* a)
-- number* (*nInvers)(number* a)
-- number* (*nCopy)(number* a)
-- number* (*nRePart)(number* a)
-- number* (*nImPart)(number* a)
-- void (*nWrite)(number* a)
-- void (*nNormalize)(number* a)
--
-- bint (*nDivBy)(number* a, number* b)
-- bint (*nEqual)(number* a,number* b)
-- bint (*nIsZero)(number* a)
-- bint (*nIsOne)(number* a)
-- bint (*nIsMOne)(number* a)
-- bint (*nGreaterZero)(number* a)
-- void (*nPower)(number* a, int i, number* * result)
-+
-+
-+ bint (*cfDivBy)(number* a, number* b, const n_Procs_s* r)
-+ bint (*cfEqual)(number* a,number* b, const n_Procs_s* )
-+ bint (*cfIsZero)(number* a, const n_Procs_s* ) # algebraic number comparison with zero
-+ bint (*cfIsOne)(number* a, const n_Procs_s* ) # algebraic number comparison with one
-+ bint (*cfIsMOne)(number* a, const n_Procs_s* )
-+ bint (*cfGreaterZero)(number* a, const n_Procs_s* )
-+ void (*cfPower)(number* a, int i, number* * result, const n_Procs_s* r) # algebraic number power
-+
-+
-+ ring *extRing
-+ int ch
-+ mpz_ptr modBase;
-+ unsigned long modExponent;
-+
-+ #n_coeffType type
-+ int type
-
- # polynomials
-
-+ const char ** n_ParameterNames(const n_Procs_s* r)
-+
-+ int n_NumberOfParameters(const n_Procs_s* r)
-+
- ctypedef struct poly "polyrec":
- poly *next
-+ number *coef
-+ unsigned long exp[1]
-
- # ideals
-
-@@ -193,22 +219,33 @@ cdef extern from "libsingular.h":
- p_Procs_s *p_Procs #polxnomial procs
- ideal *qideal #quotient ideal
-
-- char **parameter # parameter names
-- ring *algring # base extension field
- short N # number of variables
-- short P # number of parameters
-- int ch # characteristic (0:QQ, p:GF(p),-p:GF(q), 1:NF)
-- unsigned int ringtype # field etc.
-- mpz_ptr ringflaga
-- unsigned long ringflagb
-+
- int pCompIndex # index of components
- unsigned long bitmask # mask for getting single exponents
-
-- n_Procs_s* cf
-+
-+ n_Procs_s* cf # coefficient field/ring
- int ref
-
-+ # return total degree of p
-+
-+ long (*pLDeg)(poly *p, int *l, ring *r)
-+ long (*pLDegOrig)(poly *p, int *l, ring *r)
-+ long (*pFDeg)(poly *p, ring *r)
-+ long (*pFDegOrig)(poly *p, ring *r)
-+
-+
-+ long p_Deg(poly *p, ring *r)
-+ long p_WTotaldegree(poly *p, ring *r)
-+ long p_Totaldegree(poly *p, ring *r)
-+ long p_WDegree(poly *p, ring *r)
-+
- # available ring orders
-
-+ ctypedef struct AlgExtInfo:
-+ ring * r
-+
- cdef enum rRingOrder_t:
- ringorder_no
- ringorder_a
-@@ -368,7 +405,6 @@ cdef extern from "libsingular.h":
-
- cdef ring *currRing
- cdef ideal *currQuotient
--
- # omalloc bin for numbers
-
- cdef omBin *rnumber_bin
-@@ -393,7 +429,7 @@ cdef extern from "libsingular.h":
- cdef idhdl *currRingHdl
-
- cdef int errorreported
-- cdef int verbose
-+ cdef int si_opt_2 # previously 'verbose'
- cdef void * currentVoice
- cdef int myynest
-
-@@ -408,6 +444,10 @@ cdef extern from "libsingular.h":
-
- int siInit(char *)
-
-+ ctypedef short (*cfInitCharProc)(coeffs, void *)
-+
-+ n_coeffType nRegister(n_coeffType n, cfInitCharProc p)
-+
- # external resource init
-
- void feInitResources(char *name)
-@@ -439,7 +479,25 @@ cdef extern from "libsingular.h":
-
- # construct ring with characteristic, number of vars and names
-
-- ring *rDefault(int char, int nvars, char **names)
-+ ring *rDefault(int char , int nvars, char **names)
-+ ring *rDefault(const n_Procs_s* cf, int nvars, char **names)
-+ ring *rDefault(int ch , int nvars, char **names,int ord_size, int *ord, int *block0, int *block1, int **wvhdl)
-+ ring *rDefault(const n_Procs_s* cf, int nvars, char **names,int ord_size, int *ord, int *block0, int *block1, int **wvhdl)
-+
-+
-+
-+
-+ # see coeffs.h
-+ ctypedef struct GFInfo:
-+ int GFChar;
-+ int GFDegree;
-+ const char* GFPar_name;
-+
-+
-+ # parameter is pointer to gGFInfo
-+ #
-+ n_Procs_s* nInitChar(n_coeffType t, void * parameter)
-+
-
- # ring destructor
-
-@@ -541,7 +599,7 @@ cdef extern from "libsingular.h":
-
- # return whether a polynomial is homogenous
-
-- int pIsHomogeneous(poly *p)
-+ int p_IsHomogeneous(poly *p, const ring *r)
-
- # return string representation of p
-
-@@ -614,6 +672,8 @@ cdef extern from "libsingular.h":
-
- long p_Totaldegree(poly *p, ring *r)
-
-+ long pLDeg1_Totaldegree(poly * p,int *l, ring * r)
-+
- # iterate through the monomials of p
-
- poly *pNext(poly *p)
-@@ -651,29 +711,26 @@ cdef extern from "libsingular.h":
-
- # gcd of f and g
-
-- poly *singclap_gcd ( poly *f, poly *g )
-+ poly *singclap_gcd ( poly *f, poly *g, ring * r )
-
- # resultant of f and g in x
-
-- poly *singclap_resultant ( poly *f, poly *g , poly *x)
-+ poly *singclap_resultant ( poly *f, poly *g , poly *x, ring * r)
-
- # extended gcd of f and g
-
-- int singclap_extgcd( poly *f, poly *g, poly *res, poly *pa, poly *pb )
-+ int singclap_extgcd( poly *f, poly *g, poly *res, poly *pa, poly *pb, ring * r )
-
- # full polynomial division (as opposed to monomial division)
-
-- poly *singclap_pdivide ( poly *f, poly *g )
-+ poly *singclap_pdivide ( poly *f, poly *g, ring * r )
-
- # factorization
-
-- ideal *singclap_factorize ( poly *f, intvec ** v , int with_exps)
--
-- # TRUE if p is square free
-- int singclap_isSqrFree(poly *p)
-+ ideal *singclap_factorize ( poly *f, intvec ** v , int with_exps, ring * r)
-
- # return determinant of i
-- poly *singclap_det(matrix *i)
-+ poly *singclap_det(matrix *i, ring * r)
-
- # normal form calculation of p with respect to i, q is quotient
- # ring.
-@@ -685,9 +742,7 @@ cdef extern from "libsingular.h":
-
- poly *pDiff(poly *p, int i)
-
-- # return total degree of p
-
-- int (*pLDeg)(poly *p, int *l, ring *r)
-
- # TRUE if p is a vector
-
-@@ -716,13 +771,11 @@ cdef extern from "libsingular.h":
-
- number *nlRInit(int)
-
-- # rational number from numerator and denominator
-
-- number *nlInit2gmp(mpz_t n, mpz_t d)
-
- # rational number from numerator and denominator
-
-- number *nlInit2(int i, int j)
-+ number *nlInit2(int i, int j,const n_Procs_s* cf)
-
- # simplify rational number (cancel common factors)
-
-@@ -732,65 +785,6 @@ cdef extern from "libsingular.h":
-
- number *nlCopy(number *)
-
-- # get numerator
--
-- number *nlGetNumerator(number *n, ring *r)
--
-- # get denominator
--
-- number *nlGetDenom(number *n, ring *r)
--
-- # delete rational number
--
-- void nlDelete(number **n, ring *r)
--
-- # i-th algebraic number paraemeter
--
-- number *naPar(int i)
--
-- # algebraic number power
--
-- void naPower(number *, int, number **)
--
-- # algebraic number multiplication
--
-- number *naMult(number *, number *)
--
-- # algebraic number addition
--
-- number *naAdd(number *, number *)
--
-- # deep copy of algebraic number
--
-- number *naCopy(number *)
--
-- # algebraic number from int
--
-- number *naInit(int, ring *r)
--
-- # algebraic number destructor
--
-- void naDelete(number **, ring*)
--
-- # algebraic number comparison with zero
--
-- int naIsZero(number *)
--
-- # algebraic number comparison with one
--
-- int naIsOne(number *)
--
-- # get current coefficent
--
-- number *napGetCoeff(napoly *z)
--
-- # get exponent of i-th variable
--
-- int napGetExpFrom(napoly *, int i, ring* r)
--
-- # normalize a number
--
-- void naNormalize(number *)
-
- # number to integer handle
-
-@@ -800,19 +794,6 @@ cdef extern from "libsingular.h":
-
- long SR_HDL(number *)
-
-- # map Q -> Q(a)
-- number *naMap00(number *c)
--
-- # init integer
-- number *nrzInit(int i, ring *r)
--
-- # init ZmodN from GMP
-- number *nrnMapGMP(number *v)
--
-- #init 2^m from a long
-- number *nr2mMapZp(number *)
--
--
- # get C int from ZmodN
- int nrnInt(number *v)
-
-@@ -824,9 +805,6 @@ cdef extern from "libsingular.h":
-
- void id_Delete(ideal **, ring *)
-
-- # mappinf from ideal i1 in r1 by i2 to r2
--
-- ideal *fast_map(ideal *i1, ring *r1, ideal *i2, ring *r2)
-
- # lifting
-
-@@ -842,7 +820,7 @@ cdef extern from "libsingular.h":
-
- # rank of free module for m
-
-- long idRankFreeModule(ideal *m, ring *r)
-+ long id_RankFreeModule(ideal *m, ring *r)
-
- # buchberger's algorithm
-
-@@ -1003,54 +981,127 @@ cdef extern from "libsingular.h":
- void setFlag(leftv *A, int F)
- void resetFlag(leftv *A, int F)
-
--cdef extern from "singular/prCopy.h":
-+
-+
-+
-+cdef extern from "singular/coeffs/rmodulo2m.h":
-+
-+ #init 2^m from a long
-+ number *nr2mMapZp(number *,const n_Procs_s* src,const n_Procs_s* dst)
-+
-+
-+cdef extern from "singular/kernel/maps/fast_maps.h":
-+
-+ # mappinf from ideal i1 in r1 by i2 to r2
-+
-+ ideal *fast_map_common_subexp(ideal *i1, ring *r1, ideal *i2, ring *r2)
-+
-+
-+
-+cdef extern from "singular/polys/ext_fields/algext.h":
-+
-+ naInitChar(n_Procs_s* cf, void * infoStruct)
-+
-+ ctypedef number* (*nMapFunc)(number *c,const n_Procs_s* src,const n_Procs_s* dst)
-+
-+ nMapFunc naSetMap(const n_Procs_s* src, const n_Procs_s* dst)
-+
-+cdef extern from "singular/coeffs/rmodulon.h":
-+
-+ # init ZmodN from GMP
-+ number *nrnMapGMP(number *v,const n_Procs_s* src,const n_Procs_s* dst)
-+
-+ nMapFunc nrnSetMap(const n_Procs_s* src,const n_Procs_s* dst)
-+
-+cdef extern from "singular/coeffs/rmodulon.h":
-+ # see rmodulon.h
-+
-+ ctypedef struct ZnmInfo:
-+ mpz_ptr base;
-+ unsigned long exp;
-+
-+
-+cdef extern from "singular/coeffs/rintegers.h":
-+
-+ # init integer
-+ number *nrzInit(int i, const n_Procs_s* cf)
-+
-+
-+cdef extern from "singular/polys/weight.h":
-+
-+
-+ double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
-+
-+
-+cdef extern from "singular/polys/prCopy.h":
- poly *prCopyR_NoSort(poly *p, ring *r, ring *dest_r)
- poly *prCopyR(poly *p, ring *r, ring *dest_r)
-
- cdef int LANG_TOP
-
-+cdef extern from "singular/polys/nc/nc.h":
- # Non-commutative functions
- ctypedef enum nc_type:
-- nc_error # Something's gone wrong!
-- nc_general # yx=q xy+...
-- nc_skew # yx=q xy
-- nc_comm # yx= xy
-- nc_lie, # yx=xy+...
-- nc_undef, # for internal reasons */
-- nc_exterior #
-+ nc_error
-+ nc_general
-+ nc_skew
-+ nc_comm
-+ nc_lie
-+ nc_undef
-+ nc_exterior
-
--
--cdef extern from "singular/gring.h":
- void ncRingType(ring *, nc_type)
- nc_type ncRingType_get "ncRingType" (ring *)
- int nc_CallPlural(matrix* CC, matrix* DD, poly* CN, poly* DN, ring* r)
- bint nc_SetupQuotient(ring *, ring *, bint)
-
--cdef extern from "singular/sca.h":
-+
-+cdef extern from "singular/coeffs/longrat.h":
-+
-+ # get numerator
-+
-+ number *nlGetNumerator(number *n, const n_Procs_s* cf)
-+
-+ # get denominator
-+
-+ number *nlGetDenom(number *n, const n_Procs_s* cf)
-+
-+
-+ # rational number from numerator and denominator
-+
-+ number *nlInit2gmp(mpz_t n, mpz_t d,const n_Procs_s* cf)
-+
-+
-+ # delete rational number
-+
-+ void nlDelete(number **n, const n_Procs_s* cf)
-+
-+
-+cdef extern from "singular/polys/nc/sca.h":
- void sca_p_ProcsSet(ring *, p_Procs_s *)
- void scaFirstAltVar(ring *, int)
- void scaLastAltVar(ring *, int)
-
--cdef extern from "singular/ring.h":
-+cdef extern from "singular/polys/monomials/ring.h":
- bint rIsPluralRing(ring* r)
- void rPrint "rWrite"(ring* r)
- char* rOrderingString "rOrdStr"(ring* r)
- void pDebugPrint "p_DebugPrint" (poly*p, ring* r)
-
--cdef extern from "singular/stairc.h":
-+cdef extern from "singular/kernel/combinatorics/stairc.h":
- # Computes the monomial basis for R[x]/I
- ideal *scKBase(int deg, ideal *s, ideal *Q)
-
--cdef extern from "singular/lists.h":
-+cdef extern from "singular/Singular/lists.h":
- ctypedef struct lists "slists":
- int nr
- leftv *m
- void (*Init)(int n)
-
--cdef extern from "singular/kstd1.h":
-+cdef extern from "singular/kernel/GBEngine/kstd1.h":
- cdef extern int Kstd1_deg # degBound, default 0
- cdef extern int Kstd1_mu # multBound, default 0
-
--cdef extern from "singular/syz.h":
-+cdef extern from "singular/kernel/GBEngine/syz.h":
- ctypedef struct syStrategy "ssyStrategy":
- short references
-diff --git a/src/sage/libs/singular/function.pyx b/src/sage/libs/singular/function.pyx
-index 74ecee3..9265099 100644
---- a/src/sage/libs/singular/function.pyx
-+++ b/src/sage/libs/singular/function.pyx
-@@ -43,7 +43,7 @@ available, use the :func:`lib` function as shown below::
- sage: primdecSY = singular_function('primdecSY')
- Traceback (most recent call last):
- ...
-- NameError: Function 'primdecSY' is not defined.
-+ NameError: Singular library function 'primdecSY' is not defined
-
- sage: singular_lib('primdec.lib')
- sage: primdecSY = singular_function('primdecSY')
-@@ -202,7 +202,7 @@ cdef class RingWrap:
- sage: ring(l, ring=P).npars()
- 0
- """
-- return self._ring.P
-+ return n_NumberOfParameters(self._ring.cf)
-
- def ordering_string(self):
- """
-@@ -236,7 +236,7 @@ cdef class RingWrap:
- sage: ring(l, ring=P).par_names()
- []
- """
-- return [self._ring.parameter[i] for i in range(self.npars())]
-+ return [n_ParameterNames(self._ring.cf)[i] for i in range(self.npars())]
-
- def characteristic(self):
- """
-@@ -252,7 +252,7 @@ cdef class RingWrap:
- sage: ring(l, ring=P).characteristic()
- 0
- """
-- return self._ring.ch
-+ return self._ring.cf.ch
-
- def is_commutative(self):
- """
-@@ -1061,7 +1061,7 @@ cdef class LibraryCallHandler(BaseCallHandler):
- res = <leftv*> omAllocBin(sleftv_bin)
- res.Init()
- res.Copy(&iiRETURNEXPR)
-- iiRETURNEXPR.Init();
-+ iiRETURNEXPR.Init()
- return res
- raise RuntimeError("Error raised calling singular function")
-
-@@ -1104,7 +1104,7 @@ cdef class KernelCallHandler(BaseCallHandler):
- cdef leftv *arg2
- cdef leftv *arg3
-
-- cdef int number_of_arguments = len(argument_list)
-+ cdef Py_ssize_t number_of_arguments = len(argument_list)
-
- # Handle functions with an arbitrary number of arguments, sent
- # by an argument list.
-@@ -1147,7 +1147,9 @@ cdef class KernelCallHandler(BaseCallHandler):
- global error_messages
-
- errorreported += 1
-- error_messages.append("Wrong number of arguments")
-+ error_messages.append(
-+ "Wrong number of arguments (got {} arguments, arity code is {})"
-+ .format(number_of_arguments, self.arity))
- return NULL
-
- cdef bint free_res(self):
-@@ -1184,6 +1186,7 @@ cdef class SingularFunction(SageObject):
- currRingHdl = ggetid("my_awesome_sage_ring")
- if currRingHdl == NULL:
- currRingHdl = enterid("my_awesome_sage_ring", 0, RING_CMD, &IDROOT, 1)
-+ currRingHdl.data.uring = <ring *>omAlloc0Bin(sip_sring_bin)
- currRingHdl.data.uring.ref += 1
-
- cdef BaseCallHandler get_call_handler(self):
-@@ -1248,9 +1251,9 @@ cdef class SingularFunction(SageObject):
- sage: size(1,2)
- Traceback (most recent call last):
- ...
-- RuntimeError: Error in Singular function call 'size':
-- Wrong number of arguments
-- sage: size('foobar')
-+ RuntimeError: error in Singular function call 'size':
-+ Wrong number of arguments (got 2 arguments, arity code is 300)
-+ sage: size('foobar', ring=P)
- 6
-
- Show the usage of the optional ``attributes`` parameter::
-@@ -1298,9 +1301,9 @@ cdef class SingularFunction(SageObject):
- sage: _ = triangL(I)
- Traceback (most recent call last):
- ...
-- RuntimeError: Error in Singular function call 'triangL':
-- The input is no groebner basis.
-- leaving triang.lib::triangL
-+ RuntimeError: error in Singular function call 'triangL':
-+ The input is no groebner basis.
-+ leaving triang.lib::triangL
-
- sage: G= Ideal(I.groebner_basis())
- sage: triangL(G,attributes={G:{'isSB':1}})
-@@ -1510,8 +1513,8 @@ cdef inline call_function(SingularFunction self, tuple args, object R, bint sign
-
- if errorreported:
- errorreported = 0
-- raise RuntimeError("Error in Singular function call '%s':\n %s"%
-- (self._name, "\n ".join(error_messages)))
-+ raise RuntimeError("error in Singular function call %r:\n%s"%
-+ (self._name, "\n".join(error_messages)))
-
- res = argument_list.to_python(_res)
-
-@@ -1552,7 +1555,7 @@ cdef class SingularLibraryFunction(SingularFunction):
- cdef BaseCallHandler get_call_handler(self):
- cdef idhdl* singular_idhdl = ggetid(self._name)
- if singular_idhdl==NULL:
-- raise NameError("Function '%s' is not defined."%self._name)
-+ raise NameError("Singular library function {!r} is not defined".format(self._name))
- if singular_idhdl.typ!=PROC_CMD:
- raise ValueError("Not a procedure")
-
-@@ -1587,15 +1590,19 @@ cdef class SingularKernelFunction(SingularFunction):
- sage: f = SingularKernelFunction("std")
- sage: f(I)
- [y - 1, x + 1]
-+ sage: SingularKernelFunction("no_such_function")
-+ Traceback (most recent call last):
-+ ...
-+ NameError: Singular kernel function 'no_such_function' is not defined
- """
- super(SingularKernelFunction,self).__init__(name)
- self.call_handler = self.get_call_handler()
-
- cdef BaseCallHandler get_call_handler(self):
-- cdef int cmd_n = -1
-+ cdef int cmd_n = 0
- arity = IsCmd(self._name, cmd_n) # call by reverence for CMD_n
-- if cmd_n == -1:
-- raise NameError("Function '%s' is not defined."%self._name)
-+ if not cmd_n:
-+ raise NameError("Singular kernel function {!r} is not defined".format(self._name))
-
- return KernelCallHandler(cmd_n, arity)
-
-@@ -1647,18 +1654,18 @@ def singular_function(name):
- sage: factorize()
- Traceback (most recent call last):
- ...
-- RuntimeError: Error in Singular function call 'factorize':
-- Wrong number of arguments
-+ RuntimeError: error in Singular function call 'factorize':
-+ Wrong number of arguments (got 0 arguments, arity code is 303)
- sage: factorize(f, 1, 2)
- Traceback (most recent call last):
- ...
-- RuntimeError: Error in Singular function call 'factorize':
-- Wrong number of arguments
-+ RuntimeError: error in Singular function call 'factorize':
-+ Wrong number of arguments (got 3 arguments, arity code is 303)
- sage: factorize(f, 1, 2, 3)
- Traceback (most recent call last):
- ...
-- RuntimeError: Error in Singular function call 'factorize':
-- Wrong number of arguments
-+ RuntimeError: error in Singular function call 'factorize':
-+ Wrong number of arguments (got 4 arguments, arity code is 303)
-
- The Singular function ``list`` can be called with any number of
- arguments::
-@@ -1675,10 +1682,10 @@ def singular_function(name):
-
- We try to define a non-existing function::
-
-- sage: number_foobar = singular_function('number_foobar');
-+ sage: number_foobar = singular_function('number_foobar')
- Traceback (most recent call last):
- ...
-- NameError: Function 'number_foobar' is not defined.
-+ NameError: Singular library function 'number_foobar' is not defined
-
- ::
-
-@@ -1809,21 +1816,22 @@ def lib(name):
- sage: primes(2,10, ring=GF(127)['x,y,z'])
- (2, 3, 5, 7)
- """
-- global verbose
-- cdef int vv = verbose
-+ global si_opt_2
-
-- if get_verbose() <= 0:
-- verbose &= ~Sy_bit(V_LOAD_LIB)
-+ cdef int vv = si_opt_2
-
- if get_verbose() <= 0:
-- verbose &= ~Sy_bit(V_REDEFINE)
-+ si_opt_2 &= ~Sy_bit(V_LOAD_LIB)
-+ si_opt_2 &= ~Sy_bit(V_REDEFINE)
-
-- cdef bint failure = iiLibCmd(omStrDup(name), 1, 1, 1)
-- verbose = vv
-+ cdef char* cname = omStrDup(name)
-+ sig_on()
-+ cdef bint failure = iiLibCmd(cname, 1, 1, 1)
-+ sig_off()
-+ si_opt_2 = vv
-
- if failure:
-- raise NameError("Library '%s' not found."%(name,))
--
-+ raise NameError("Singular library {!r} not found".format(name))
-
-
- def list_of_functions(packages=False):
-@@ -1832,11 +1840,12 @@ def list_of_functions(packages=False):
-
- INPUT:
-
-- - ``packages`` - include local functions in packages.
-+ - ``packages`` -- include local functions in packages.
-
- EXAMPLE::
-
-- sage: 'groebner' in sage.libs.singular.function.list_of_functions()
-+ sage: from sage.libs.singular.function import list_of_functions
-+ sage: 'groebner' in list_of_functions()
- True
- """
- cdef list l = []
-@@ -1856,7 +1865,6 @@ def list_of_functions(packages=False):
- return l
-
-
--#cdef ring*?
- cdef inline RingWrap new_RingWrap(ring* r):
- cdef RingWrap ring_wrap_result = RingWrap.__new__(RingWrap)
- ring_wrap_result._ring = r
-diff --git a/src/sage/libs/singular/groebner_strategy.pyx b/src/sage/libs/singular/groebner_strategy.pyx
-index b4c2be9..a5843e3 100644
---- a/src/sage/libs/singular/groebner_strategy.pyx
-+++ b/src/sage/libs/singular/groebner_strategy.pyx
-@@ -23,7 +23,7 @@ cdef extern from *: # hack to get at cython macro
-
- from sage.libs.singular.decl cimport ideal, ring, poly, currRing
- from sage.libs.singular.decl cimport rChangeCurrRing
--from sage.libs.singular.decl cimport new_skStrategy, delete_skStrategy, idRankFreeModule
-+from sage.libs.singular.decl cimport new_skStrategy, delete_skStrategy, id_RankFreeModule
- from sage.libs.singular.decl cimport initEcartBBA, enterSBba, initBuchMoraCrit, initS, pNorm, id_Delete, kTest
- from sage.libs.singular.decl cimport omfree, redNF, p_Copy, redtailBba
-
-@@ -117,7 +117,7 @@ cdef class GroebnerStrategy(SageObject):
- cdef ideal *i = sage_ideal_to_singular_ideal(L)
- self._strat = new_skStrategy()
-
-- self._strat.ak = idRankFreeModule(i, R._ring)
-+ self._strat.ak = id_RankFreeModule(i, R._ring)
- #- creating temp data structures
- initBuchMoraCrit(self._strat)
- self._strat.initEcart = initEcartBBA
-@@ -353,7 +353,7 @@ cdef class NCGroebnerStrategy(SageObject):
- cdef ideal *i = sage_ideal_to_singular_ideal(L)
- self._strat = new_skStrategy()
-
-- self._strat.ak = idRankFreeModule(i, R._ring)
-+ self._strat.ak = id_RankFreeModule(i, R._ring)
- #- creating temp data structures
- initBuchMoraCrit(self._strat)
- self._strat.initEcart = initEcartBBA
-diff --git a/src/sage/libs/singular/polynomial.pyx b/src/sage/libs/singular/polynomial.pyx
-index b40dc07..e243fae 100644
---- a/src/sage/libs/singular/polynomial.pyx
-+++ b/src/sage/libs/singular/polynomial.pyx
-@@ -22,8 +22,8 @@ plusminus_pattern = re.compile("([^\(^])([\+\-])")
- from sage.libs.singular.decl cimport number, ideal
- from sage.libs.singular.decl cimport currRing, rChangeCurrRing
- from sage.libs.singular.decl cimport p_Copy, p_Add_q, p_Neg, pp_Mult_nn, p_GetCoeff, p_IsConstant, p_Cmp, pNext
--from sage.libs.singular.decl cimport p_GetMaxExp, pp_Mult_qq, pPower, p_String, p_GetExp, pLDeg
--from sage.libs.singular.decl cimport n_Delete, idInit, fast_map, id_Delete
-+from sage.libs.singular.decl cimport p_GetMaxExp, pp_Mult_qq, pPower, p_String, p_GetExp, p_Deg, p_Totaldegree, p_WTotaldegree, p_WDegree
-+from sage.libs.singular.decl cimport n_Delete, idInit, fast_map_common_subexp, id_Delete
- from sage.libs.singular.decl cimport omAlloc0, omStrDup, omFree
- from sage.libs.singular.decl cimport p_GetComp, p_SetComp
- from sage.libs.singular.decl cimport pSubst
-@@ -198,7 +198,7 @@ cdef int singular_polynomial_call(poly **ret, poly *p, ring *r, list args, poly
- from_id.m[0] = p
-
- rChangeCurrRing(r)
-- cdef ideal *res_id = fast_map(from_id, r, to_id, r)
-+ cdef ideal *res_id = fast_map_common_subexp(from_id, r, to_id, r)
- ret[0] = res_id.m[0]
-
- # Unsure why we have to normalize here. See #16958
-@@ -250,20 +250,19 @@ cdef int singular_polynomial_cmp(poly *p, poly *q, ring *r):
- return 0
- elif p_IsConstant(q,r):
- # compare 0, const
-- return 1-2*r.cf.nGreaterZero(p_GetCoeff(q,r)) # -1: <, 1: > #
-+ return 1-2*r.cf.cfGreaterZero(p_GetCoeff(q,r), r.cf) # -1: <, 1: > #
- elif q == NULL:
- if p_IsConstant(p,r):
- # compare const, 0
-- return -1+2*r.cf.nGreaterZero(p_GetCoeff(p,r)) # -1: <, 1: >
-- #else
-+ return -1+2*r.cf.cfGreaterZero(p_GetCoeff(p,r), r.cf) # -1: <, 1: >
-
- while ret==0 and p!=NULL and q!=NULL:
- ret = p_Cmp( p, q, r)
-
- if ret==0:
-- h = r.cf.nSub(p_GetCoeff(p, r),p_GetCoeff(q, r))
-+ h = r.cf.cfSub(p_GetCoeff(p, r),p_GetCoeff(q, r),r.cf)
- # compare coeffs
-- ret = -1+r.cf.nIsZero(h)+2*r.cf.nGreaterZero(h) # -1: <, 0:==, 1: >
-+ ret = -1+r.cf.cfIsZero(h,r.cf)+2*r.cf.cfGreaterZero(h, r.cf) # -1: <, 0:==, 1: >
- n_Delete(&h, r)
- p = pNext(p)
- q = pNext(q)
-@@ -332,7 +331,7 @@ cdef int singular_polynomial_div_coeff(poly** ret, poly *p, poly *q, ring *r) ex
- raise ZeroDivisionError
- sig_on()
- cdef number *n = p_GetCoeff(q, r)
-- n = r.cf.nInvers(n)
-+ n = r.cf.cfInvers(n,r.cf)
- ret[0] = pp_Mult_nn(p, n, r)
- n_Delete(&n, r)
- sig_off()
-@@ -524,14 +523,22 @@ cdef object singular_polynomial_str_with_changed_varnames(poly *p, ring *r, obje
- return s
-
- cdef long singular_polynomial_deg(poly *p, poly *x, ring *r):
-- cdef int deg, _deg, i
--
-- deg = 0
-+ cdef int i
-+ cdef long _deg, deg
-+
-+ deg = -1
-+ _deg = -1
- if p == NULL:
- return -1
- if(r != currRing): rChangeCurrRing(r)
- if x == NULL:
-- return pLDeg(p,°,r)
-+ while p:
-+ _deg = p_WTotaldegree(p,r)
-+
-+ if _deg > deg:
-+ deg = _deg
-+ p = pNext(p)
-+ return deg
-
- for i in range(1,r.N+1):
- if p_GetExp(x, i, r):
-@@ -603,5 +610,3 @@ cdef int singular_polynomial_subst(poly **p, int var_index, poly *value, ring *r
- p[0] = pSubst(p[0], var_index+1, value)
- if unlikely(count >= 15 or exp > 15): sig_off()
- return 0
--
--
-diff --git a/src/sage/libs/singular/ring.pyx b/src/sage/libs/singular/ring.pyx
-index 2feddbd..f7105af 100644
---- a/src/sage/libs/singular/ring.pyx
-+++ b/src/sage/libs/singular/ring.pyx
-@@ -18,11 +18,14 @@ from __future__ import print_function
- from sage.libs.gmp.types cimport __mpz_struct
- from sage.libs.gmp.mpz cimport mpz_init_set_ui, mpz_init_set
-
--from sage.libs.singular.decl cimport number, lnumber, napoly, ring, currRing
--from sage.libs.singular.decl cimport rChangeCurrRing, rCopy0, rComplete, rDelete
-+from sage.libs.singular.decl cimport number, poly, ring, currRing
-+from sage.libs.singular.decl cimport rChangeCurrRing, rCopy0, rComplete, rDelete, idInit
- from sage.libs.singular.decl cimport omAlloc0, omStrDup, omAlloc, omAlloc0Bin, sip_sring_bin, rnumber_bin
- from sage.libs.singular.decl cimport ringorder_dp, ringorder_Dp, ringorder_lp, ringorder_rp, ringorder_ds, ringorder_Ds, ringorder_ls, ringorder_M, ringorder_C, ringorder_wp, ringorder_Wp, ringorder_ws, ringorder_Ws, ringorder_a
--from sage.libs.singular.decl cimport p_Copy
-+from sage.libs.singular.decl cimport p_Copy, prCopyR
-+from sage.libs.singular.decl cimport n_unknown, n_Zp, n_Q, n_R, n_GF, n_long_R, n_algExt,n_transExt,n_long_C, n_Z, n_Zn, n_Znm, n_Z2m, n_CF
-+from sage.libs.singular.decl cimport n_coeffType, cfInitCharProc
-+from sage.libs.singular.decl cimport rDefault, GFInfo, ZnmInfo, nInitChar, AlgExtInfo, nRegister, naInitChar
-
- from sage.rings.integer cimport Integer
- from sage.rings.integer_ring cimport IntegerRing_class
-@@ -109,30 +112,42 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL:
- sage: P.<x,y,z> = Zmod(25213521351515232)[]; P
- Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 25213521351515232
- """
-+ cdef long cexponent
-+ cdef GFInfo* _param
-+ cdef ZnmInfo _info
- cdef ring* _ring
- cdef char **_names
-+ cdef char **_ext_names
- cdef char *_name
- cdef int i,j
- cdef int nblcks
- cdef int offset
-+ cdef int nvars
- cdef int characteristic
-- cdef int ringtype = 0
-+ cdef int modbase
-+
-+ cdef n_coeffType ringtype = n_unknown
- cdef MPolynomialRing_libsingular k
- cdef MPolynomial_libsingular minpoly
-- cdef lnumber *nmp
-- cdef int * m
-+ cdef AlgExtInfo extParam
-+ cdef n_coeffType _type = n_unknown
-
-- cdef __mpz_struct* ringflaga
-- cdef unsigned long ringflagb
-+ #cdef cfInitCharProc myfunctionptr;
-
-- is_extension = False
-+ _ring = NULL
-
- n = int(n)
- if n<1:
- raise ArithmeticError("The number of variables must be at least 1.")
-
-+ nvars = n
- order = TermOrder(term_order, n)
-
-+ cdef nbaseblcks = len(order.blocks())
-+ nblcks = nbaseblcks + order.singular_moreblocks()
-+ offset = 0
-+
-+
- _names = <char**>omAlloc0(sizeof(char*)*(len(names)))
- for i from 0 <= i < n:
- _name = names[i]
-@@ -149,20 +164,110 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL:
- ## p -p : Fp(a) *names FALSE (done)
- ## q q : GF(q=p^n) *names TRUE (todo)
-
-- if base_ring.is_field() and base_ring.is_finite() and base_ring.is_prime_field():
-+ _wvhdl = <int **>omAlloc0((nblcks + 2) * sizeof(int *))
-+ _order = <int *>omAlloc0((nblcks + 2) * sizeof(int))
-+ _block0 = <int *>omAlloc0((nblcks + 2) * sizeof(int))
-+ _block1 = <int *>omAlloc0((nblcks + 2) * sizeof(int))
-+
-+
-+
-+ cdef int idx = 0
-+ for i from 0 <= i < nbaseblcks:
-+ s = order[i].singular_str()
-+ if s[0] == 'M': # matrix order
-+ _order[idx] = ringorder_M
-+ mtx = order[i].matrix().list()
-+ wv = <int *>omAlloc0(len(mtx)*sizeof(int))
-+ for j in range(len(mtx)):
-+ wv[j] = int(mtx[j])
-+ _wvhdl[idx] = wv
-+ elif s[0] == 'w' or s[0] == 'W': # weighted degree orders
-+ _order[idx] = order_dict.get(s[:2], ringorder_dp)
-+ wts = order[i].weights()
-+ wv = <int *>omAlloc0(len(wts)*sizeof(int))
-+ for j in range(len(wts)):
-+ wv[j] = int(wts[j])
-+ _wvhdl[idx] = wv
-+ elif s[0] == '(' and order[i].name() == 'degneglex': # "(a(1:n),ls(n))"
-+ _order[idx] = ringorder_a
-+ if len(order[i]) == 0: # may be zero for arbitrary-length orders
-+ nlen = n
-+ else:
-+ nlen = len(order[i])
-+
-+ _wvhdl[idx] = <int *>omAlloc0(len(order[i])*sizeof(int))
-+ for j in range(nlen): _wvhdl[idx][j] = 1
-+ _block0[idx] = offset + 1 # same like subsequent rp block
-+ _block1[idx] = offset + nlen
-+
-+ idx += 1; # we need one more block here
-+ _order[idx] = ringorder_rp
-+
-+ else: # ordinary orders
-+ _order[idx] = order_dict.get(s, ringorder_dp)
-+
-+ _block0[idx] = offset + 1
-+ if len(order[i]) == 0: # may be zero in some cases
-+ _block1[idx] = offset + n
-+ else:
-+ _block1[idx] = offset + len(order[i])
-+ offset = _block1[idx]
-+ idx += 1
-+
-+ # TODO: if we construct a free module don't hardcode! This
-+ # position determines whether we break ties at monomials first or
-+ # whether we break at indices first!
-+ _order[nblcks] = ringorder_C
-+
-+
-+ if isinstance(base_ring, RationalField):
-+ characteristic = 0
-+ _ring = rDefault( characteristic ,nvars, _names, nblcks, _order, _block0, _block1, _wvhdl)
-+
-+ elif isinstance(base_ring, NumberField) and base_ring.is_absolute():
-+ characteristic = 1
-+ try:
-+ k = PolynomialRing(RationalField(), 1, [base_ring.variable_name()], 'lex')
-+ except TypeError:
-+ raise TypeError, "The multivariate polynomial ring in a single variable %s in lex order over Rational Field is supposed to be of type %s"%(base_ring.variable_name(), MPolynomialRing_libsingular)
-+
-+ minpoly = base_ring.polynomial()(k.gen())
-+
-+ _ext_names = <char**>omAlloc0(sizeof(char*))
-+ extname = k.gen()
-+ _name = k._names[0]
-+ _ext_names[0] = omStrDup(_name)
-+ _cfr = rDefault( 0, 1, _ext_names )
-+
-+ _cfr.qideal = idInit(1,1)
-+ rComplete(_cfr, 1)
-+ _cfr.qideal.m[0] = prCopyR(minpoly._poly, k._ring, _cfr)
-+ extParam.r = _cfr
-+
-+ # _type = nRegister(n_algExt, <cfInitCharProc> naInitChar);
-+ _cf = nInitChar( n_algExt, <void *>&extParam) #
-+
-+ if (_cf is NULL):
-+ raise RuntimeError, "Failed to allocate _cf ring."
-+
-+ _ring = rDefault (_cf ,nvars, _names, nblcks, _order, _block0, _block1, _wvhdl)
-+
-+ elif isinstance(base_ring, IntegerRing_class):
-+ _cf = nInitChar( n_Z, NULL) # integer coefficient ring
-+ _ring = rDefault (_cf ,nvars, _names, nblcks, _order, _block0, _block1, _wvhdl)
-+
-+ elif (isinstance(base_ring, FiniteField_generic) and base_ring.is_prime_field()):
-+ #or (is_IntegerModRing(base_ring) and base_ring.characteristic().is_prime()):
-+
- if base_ring.characteristic() <= 2147483647:
- characteristic = base_ring.characteristic()
- else:
- raise TypeError("Characteristic p must be <= 2147483647.")
-
-- elif isinstance(base_ring, RationalField):
-- characteristic = 0
-+ # example for simpler ring creation interface without monomial orderings:
-+ #_ring = rDefault(characteristic, nvars, _names)
-
-- elif isinstance(base_ring, IntegerRing_class):
-- ringflaga = <__mpz_struct*>omAlloc(sizeof(__mpz_struct))
-- mpz_init_set_ui(ringflaga, 0)
-- characteristic = 0
-- ringtype = 4 # integer ring
-+ _ring = rDefault( characteristic , nvars, _names, nblcks, _order, _block0, _block1, _wvhdl)
-
- elif isinstance(base_ring, FiniteField_generic):
- if base_ring.characteristic() <= 2147483647:
-@@ -175,145 +280,90 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL:
- except TypeError:
- raise TypeError("The multivariate polynomial ring in a single variable %s in lex order over %s is supposed to be of type %s" % (base_ring.variable_name(), base_ring,MPolynomialRing_libsingular))
- minpoly = base_ring.polynomial()(k.gen())
-- is_extension = True
-
-- elif isinstance(base_ring, NumberField) and base_ring.is_absolute():
-- characteristic = 1
-- try:
-- k = PolynomialRing(RationalField(), 1, [base_ring.variable_name()], 'lex')
-- except TypeError:
-- raise TypeError("The multivariate polynomial ring in a single variable %s in lex order over Rational Field is supposed to be of type %s" % (base_ring.variable_name(), MPolynomialRing_libsingular))
-- minpoly = base_ring.polynomial()(k.gen())
-- is_extension = True
-+ ch = base_ring.characteristic()
-+ F = ch.factor()
-+ assert(len(F)==1)
-+
-+ modbase = F[0][0]
-+ cexponent = F[0][1]
-+
-+ _ext_names = <char**>omAlloc0(sizeof(char*))
-+ _name = k._names[0]
-+ _ext_names[0] = omStrDup(_name)
-+ _cfr = rDefault( modbase, 1, _ext_names )
-+
-+ _cfr.qideal = idInit(1,1)
-+ rComplete(_cfr, 1)
-+ _cfr.qideal.m[0] = prCopyR(minpoly._poly, k._ring, _cfr)
-+ extParam.r = _cfr
-+ _cf = nInitChar( n_algExt, <void *>&extParam)
-+
-+ if (_cf is NULL):
-+ raise RuntimeError, "Failed to allocate _cf ring."
-+
-+ _ring = rDefault (_cf ,nvars, _names, nblcks, _order, _block0, _block1, _wvhdl)
-
- elif is_IntegerModRing(base_ring):
-+
- ch = base_ring.characteristic()
-- if ch.is_power_of(2):
-+ isprime = ch.is_prime()
-+
-+ if not isprime and ch.is_power_of(2):
- exponent = ch.nbits() -1
-- # it seems Singular uses ints somewhere
-- # internally, cf. #6051 (Sage) and #138 (Singular)
-- if exponent <= 30:
-- ringtype = 1
-- else:
-- ringtype = 3
-- characteristic = exponent
-- ringflaga = <__mpz_struct*>omAlloc(sizeof(__mpz_struct))
-- mpz_init_set_ui(ringflaga, 2)
-- ringflagb = exponent
-+ cexponent = exponent
-+
-+ if exponent <= 30: ringtype = n_Z2m
-+ else: ringtype = n_Znm
-+
-+ if ringtype == n_Znm:
-+
-+ F = ch.factor()
-+
-+ modbase = F[0][0]
-+ cexponent = F[0][1]
-+
-+ _info.base = <__mpz_struct*>omAlloc(sizeof(__mpz_struct))
-+ mpz_init_set_ui(_info.base, modbase)
-+ _info.exp = cexponent
-+ _cf = nInitChar( n_Znm, <void *>&_info )
-+
-+ elif ringtype == n_Z2m:
-+ _cf = nInitChar( n_Z2m, <void *>cexponent )
-+
-
-- elif base_ring.characteristic().is_prime_power() and ch < ZZ(2)**160:
-+ elif not isprime and ch.is_prime_power() and ch < ZZ(2)**160:
- F = ch.factor()
- assert(len(F)==1)
-
-- ringtype = 3
-- ringflaga = <__mpz_struct*>omAlloc(sizeof(__mpz_struct))
-- mpz_init_set(ringflaga, (<Integer>F[0][0]).value)
-- ringflagb = F[0][1]
-- characteristic = F[0][1]
-+ modbase = F[0][0]
-+ cexponent = F[0][1]
-+
-+ _info.base = <__mpz_struct*>omAlloc(sizeof(__mpz_struct))
-+ mpz_init_set_ui(_info.base, modbase)
-+ _info.exp = cexponent
-+ _cf = nInitChar( n_Znm, <void *>&_info )
-
- else:
-- # normal modulus
- try:
- characteristic = ch
- except OverflowError:
- raise NotImplementedError("Characteristic %d too big." % ch)
-- ringtype = 2
-- ringflaga = <__mpz_struct*>omAlloc(sizeof(__mpz_struct))
-- mpz_init_set_ui(ringflaga, characteristic)
-- ringflagb = 1
-- else:
-- raise NotImplementedError("Base ring is not supported.")
-
-- _ring = <ring*>omAlloc0Bin(sip_sring_bin)
-- if (_ring is NULL):
-- raise ValueError("Failed to allocate Singular ring.")
-- _ring.ch = characteristic
-- _ring.ringtype = ringtype
-- _ring.N = n
-- _ring.names = _names
--
-- if is_extension:
-- rChangeCurrRing(k._ring)
-- _ring.algring = rCopy0(k._ring)
-- rComplete(_ring.algring, 1)
-- _ring.algring.pCompIndex = -1
-- _ring.P = _ring.algring.N
-- _ring.parameter = <char**>omAlloc0(sizeof(char*)*2)
-- _ring.parameter[0] = omStrDup(_ring.algring.names[0])
--
-- nmp = <lnumber*>omAlloc0Bin(rnumber_bin)
-- nmp.z= <napoly*>p_Copy(minpoly._poly, _ring.algring) # fragile?
-- nmp.s=2
--
-- _ring.minpoly=<number*>nmp
--
-- cdef nbaseblcks = len(order.blocks())
-- nblcks = nbaseblcks + order.singular_moreblocks()
-- offset = 0
-+ _info.base = <__mpz_struct*>omAlloc(sizeof(__mpz_struct))
-+ mpz_init_set_ui(_info.base, characteristic)
-+ _info.exp = 1
-+ _cf = nInitChar( n_Zn, <void *>&_info )
-+ _ring = rDefault( _cf ,nvars, _names, nblcks, _order, _block0, _block1, _wvhdl)
-
-- _ring.wvhdl = <int **>omAlloc0((nblcks + 2) * sizeof(int *))
-- _ring.order = <int *>omAlloc0((nblcks + 2) * sizeof(int))
-- _ring.block0 = <int *>omAlloc0((nblcks + 2) * sizeof(int))
-- _ring.block1 = <int *>omAlloc0((nblcks + 2) * sizeof(int))
-
-- if order.is_local():
-- _ring.OrdSgn = -1
- else:
-- _ring.OrdSgn = 1
--
-- cdef int idx = 0
-- for i from 0 <= i < nbaseblcks:
-- s = order[i].singular_str()
-- if s[0] == 'M': # matrix order
-- _ring.order[idx] = ringorder_M
-- mtx = order[i].matrix().list()
-- wv = <int *>omAlloc0(len(mtx)*sizeof(int))
-- for j in range(len(mtx)):
-- wv[j] = int(mtx[j])
-- _ring.wvhdl[idx] = wv
-- elif s[0] == 'w' or s[0] == 'W': # weighted degree orders
-- _ring.order[idx] = order_dict.get(s[:2], ringorder_dp)
-- wts = order[i].weights()
-- wv = <int *>omAlloc0(len(wts)*sizeof(int))
-- for j in range(len(wts)):
-- wv[j] = int(wts[j])
-- _ring.wvhdl[idx] = wv
-- elif s[0] == '(' and order[i].name() == 'degneglex': # "(a(1:n),ls(n))"
-- _ring.order[idx] = ringorder_a
-- if len(order[i]) == 0: # may be zero for arbitrary-length orders
-- nlen = n
-- else:
-- nlen = len(order[i])
--
-- _ring.wvhdl[idx] = <int *>omAlloc0(len(order[i])*sizeof(int))
-- for j in range(nlen): _ring.wvhdl[idx][j] = 1
-- _ring.block0[idx] = offset + 1 # same like subsequent rp block
-- _ring.block1[idx] = offset + nlen
--
-- idx += 1; # we need one more block here
-- _ring.order[idx] = ringorder_rp
--
-- else: # ordinary orders
-- _ring.order[idx] = order_dict.get(s, ringorder_dp)
-+ raise NotImplementedError("Base ring is not supported.")
-
-- _ring.block0[idx] = offset + 1
-- if len(order[i]) == 0: # may be zero in some cases
-- _ring.block1[idx] = offset + n
-- else:
-- _ring.block1[idx] = offset + len(order[i])
-- offset = _ring.block1[idx]
-- idx += 1
-
-- # TODO: if we construct a free module don't hardcode! This
-- # position determines whether we break ties at monomials first or
-- # whether we break at indices first!
-- _ring.order[nblcks] = ringorder_C
--
-- if ringtype != 0:
-- _ring.ringflaga = ringflaga
-- _ring.ringflagb = ringflagb
-+ if (_ring is NULL):
-+ raise ValueError("Failed to allocate Singular ring.")
-
-- rComplete(_ring, 1)
- _ring.ShortOut = 0
-
- rChangeCurrRing(_ring)
-@@ -322,6 +372,16 @@ cdef ring *singular_ring_new(base_ring, n, names, term_order) except NULL:
- if wrapped_ring in ring_refcount_dict:
- raise ValueError('newly created ring already in dictionary??')
- ring_refcount_dict[wrapped_ring] = 1
-+
-+ rComplete(_ring, 1)
-+
-+ _ring.ShortOut = 0
-+
-+ if order.is_local():
-+ assert(_ring.OrdSgn == -1)
-+ if order.is_global():
-+ assert(_ring.OrdSgn == 1)
-+
- return _ring
-
-
-diff --git a/src/sage/libs/singular/singular.pxd b/src/sage/libs/singular/singular.pxd
-index b02b53a..e06566e 100644
---- a/src/sage/libs/singular/singular.pxd
-+++ b/src/sage/libs/singular/singular.pxd
-@@ -17,7 +17,7 @@ from sage.rings.number_field.number_field_base cimport NumberField
- # Conversion from Singular to Sage types
- # ======================================
-
--cdef Rational si2sa_QQ(number (*),ring (*))
-+cdef Rational si2sa_QQ(number (*), number **, ring (*))
- cdef Integer si2sa_ZZ(number (*),ring (*))
-
- cdef FFgivE si2sa_GFqGivaro(number *n, ring *_ring, Cache_givaro cache)
-@@ -53,9 +53,6 @@ cdef number *sa2si(Element elem, ring * _ring)
- # Initialisation
- # ==============
-
--cdef int overflow_check(long e, ring *_ring) except -1
-+cdef int overflow_check(unsigned long e, ring *_ring) except -1
-
- cdef init_libsingular()
--
--
--
-diff --git a/src/sage/libs/singular/singular.pyx b/src/sage/libs/singular/singular.pyx
-index 7245090..7495325 100644
---- a/src/sage/libs/singular/singular.pyx
-+++ b/src/sage/libs/singular/singular.pyx
-@@ -5,12 +5,14 @@ AUTHOR:
-
- - Martin Albrecht <malb at informatik.uni-bremen.de>
- """
--###############################################################################
-+
-+#*****************************************************************************
- # Copyright (C) 2005, 2006 William Stein <wstein at gmail.com>
- #
--# Distributed under the terms of the GNU General Public License (GPL)
--# as published by the Free Software Foundation; either version 2 of
--# the License, or (at your option) any later version.
-+# This program is free software: you can redistribute it and/or modify
-+# it under the terms of the GNU General Public License as published by
-+# the Free Software Foundation, either version 2 of the License, or
-+# (at your option) any later version.
- # http://www.gnu.org/licenses/
- ###############################################################################
- from __future__ import print_function
-@@ -24,19 +26,7 @@ cdef extern from "limits.h":
- import os
-
- from libc.stdint cimport int64_t
--from sage.libs.singular.decl cimport intvec
--from sage.libs.singular.decl cimport SR_HDL, SR_INT, SR_TO_INT
--from sage.libs.singular.decl cimport singular_options, singular_verbose_options
--from sage.libs.singular.decl cimport On, Off, SW_USE_NTL, SW_USE_NTL_GCD_0, SW_USE_EZGCD, SW_USE_NTL_SORT, SW_USE_NTL_GCD_P
--from sage.libs.singular.decl cimport napoly, lnumber, Sy_bit, OPT_REDSB, OPT_INTSTRATEGY, OPT_REDTAIL, OPT_REDTHROUGH
--from sage.libs.singular.decl cimport nlGetNumerator, nlGetDenom, nlDelete, nlInit2gmp
--from sage.libs.singular.decl cimport naIsOne, naIsOne, naIsZero, naPar, naInit, naAdd, naMult, naDelete, naMap00
--from sage.libs.singular.decl cimport napGetCoeff, napGetExpFrom, pNext
--from sage.libs.singular.decl cimport nrzInit, nr2mMapZp, nrnMapGMP
--from sage.libs.singular.decl cimport siInit
--from sage.libs.singular.decl cimport n_Init
--from sage.libs.singular.decl cimport rChangeCurrRing, currRing
--from sage.libs.singular.decl cimport WerrorS_callback, const_char_ptr
-+from sage.libs.singular.decl cimport *
-
- from sage.rings.rational_field import RationalField
- from sage.rings.integer_ring cimport IntegerRing_class
-@@ -52,7 +42,7 @@ from sage.rings.polynomial.multi_polynomial_libsingular cimport MPolynomial_libs
-
- _saved_options = (int(0),0,0)
-
--cdef Rational si2sa_QQ(number *n, ring *_ring):
-+cdef Rational si2sa_QQ(number *n, number **nn, ring *_ring):
- """
- TESTS::
-
-@@ -83,26 +73,27 @@ cdef Rational si2sa_QQ(number *n, ring *_ring):
- ## structures aligned on 4 byte boundaries and therefor have last bit zero.
- ## (The second bit is reserved as tag to allow extensions of this scheme.)
- ## Using immediates as pointers and dereferencing them gives address errors.
-- nom = nlGetNumerator(n, _ring)
-+ nom = nlGetNumerator(n, _ring.cf)
- mpz_init(nom_z)
-
- if (SR_HDL(nom) & SR_INT): mpz_set_si(nom_z, SR_TO_INT(nom))
- else: mpz_set(nom_z,nom.z)
-
- mpq_set_num(_z,nom_z)
-- nlDelete(&nom,_ring)
-+ nlDelete(&nom,_ring.cf)
- mpz_clear(nom_z)
-
-- denom = nlGetDenom(n, _ring)
-+ denom = nlGetDenom(n, _ring.cf)
- mpz_init(denom_z)
-
- if (SR_HDL(denom) & SR_INT): mpz_set_si(denom_z, SR_TO_INT(denom))
- else: mpz_set(denom_z,denom.z)
-
- mpq_set_den(_z, denom_z)
-- nlDelete(&denom,_ring)
-+ nlDelete(&denom,_ring.cf)
- mpz_clear(denom_z)
-
-+ nn[0] = n
- z = Rational()
- z.set_from_mpq(_z)
- mpq_clear(_z)
-@@ -140,31 +131,33 @@ cdef FFgivE si2sa_GFqGivaro(number *n, ring *_ring, Cache_givaro cache):
- sage: K(R(0))
- 0
- """
-- cdef napoly *z
-+ cdef poly *z
- cdef int c, e
- cdef int a
- cdef int ret
- cdef int order
-+ cdef ring *cfRing = _ring.cf.extRing
-
-- if naIsZero(n):
-+ if _ring.cf.cfIsZero(n,_ring.cf):
- return cache._zero_element
-- elif naIsOne(n):
-+ elif _ring.cf.cfIsOne(n,_ring.cf):
- return cache._one_element
-- z = (<lnumber*>n).z
-+
-+ z = <poly*>n
-
- a = cache.objectptr.indeterminate()
- ret = cache.objectptr.zero
- order = cache.objectptr.cardinality() - 1
-
- while z:
-- c = cache.objectptr.initi(c, <int64_t>napGetCoeff(z))
-- e = napGetExpFrom(z,1, _ring)
-+ c = cache.objectptr.initi(c, <int64_t>p_GetCoeff(z, cfRing))
-+ e = p_GetExp(z, 1, cfRing)
- if e == 0:
- ret = cache.objectptr.add(ret, c, ret)
- else:
- a = ( e * cache.objectptr.indeterminate() ) % order
- ret = cache.objectptr.axpy(ret, c, a, ret)
-- z = <napoly*>pNext(<poly*>z)
-+ z = <poly*>pNext(<poly*>z)
- return (<FFgivE>cache._zero_element)._new_c(ret)
-
- cdef FFgf2eE si2sa_GFqNTLGF2E(number *n, ring *_ring, Cache_ntl_gf2e cache):
-@@ -179,26 +172,27 @@ cdef FFgf2eE si2sa_GFqNTLGF2E(number *n, ring *_ring, Cache_ntl_gf2e cache):
- sage: type(f.lc())
- <type 'sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement'>
- """
-- cdef napoly *z
-+ cdef poly *z
- cdef long c
- cdef int e
- cdef FFgf2eE a
- cdef FFgf2eE ret
-+ cdef ring *cfRing = _ring.cf.extRing
-
-- if naIsZero(n):
-+ if _ring.cf.cfIsZero(n,_ring.cf):
- return cache._zero_element
-- elif naIsOne(n):
-+ elif _ring.cf.cfIsOne(n,_ring.cf):
- return cache._one_element
-- z = (<lnumber*>n).z
-
-+ z = <poly*>n
- a = cache._gen
- ret = cache._zero_element
-
- while z:
-- c = <long>napGetCoeff(z)
-- e = napGetExpFrom(z,1, _ring)
-+ c = <long>p_GetCoeff(z, cfRing)
-+ e = p_GetExp(z, 1, cfRing)
- ret += c * a**e
-- z = <napoly*>pNext(<poly*>z)
-+ z = <poly*>pNext(<poly*>z)
- return ret
-
- cdef object si2sa_GFq_generic(number *n, ring *_ring, object base):
-@@ -222,29 +216,31 @@ cdef object si2sa_GFq_generic(number *n, ring *_ring, object base):
- 2147483646
-
- """
-- cdef napoly *z
-+ cdef poly *z
- cdef long c
- cdef int e
- cdef object a
- cdef object ret
-+ cdef ring *cfRing = _ring.cf.extRing
-
-- if naIsZero(n):
-+ if _ring.cf.cfIsZero(n,_ring.cf):
- return base.zero()
-- elif naIsOne(n):
-+ elif _ring.cf.cfIsOne(n,_ring.cf):
- return base.one()
-- z = (<lnumber*>n).z
-+
-+ z = <poly*>n
-
- a = base.gen()
- ret = base.zero()
-
- while z:
-- c = <long>napGetCoeff(z)
-- e = napGetExpFrom(z,1, _ring)
-+ c = <long>p_GetCoeff(z, cfRing)
-+ e = p_GetExp(z, 1, cfRing)
- if e == 0:
- ret = ret + c
- elif c != 0:
- ret = ret + c * a**e
-- z = <napoly*>pNext(<poly*>z)
-+ z = <poly*>pNext(<poly*>z)
- return ret
-
- cdef object si2sa_NF(number *n, ring *_ring, object base):
-@@ -259,30 +255,40 @@ cdef object si2sa_NF(number *n, ring *_ring, object base):
- sage: type(f.lc())
- <type 'sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic'>
- """
-- cdef napoly *z
-+ cdef poly *z
- cdef number *c
- cdef int e
- cdef object a
- cdef object ret
-+ cdef ring *cfRing = _ring.cf.extRing
-
-- if naIsZero(n):
-+ if _ring.cf.cfIsZero(n,_ring.cf):
- return base._zero_element
-- elif naIsOne(n):
-+ elif _ring.cf.cfIsOne(n,_ring.cf):
- return base._one_element
-- z = (<lnumber*>n).z
-+
-+ z = <poly*>n
-
- a = base.gen()
- ret = base(0)
-
- while z:
-- c = napGetCoeff(z)
-- coeff = si2sa_QQ(c, _ring)
-- e = napGetExpFrom(z,1, _ring)
-+ # p_GetCoeff returns a reference
-+ c = p_GetCoeff(z, cfRing)
-+ # si2sa_QQ might modify c
-+ coeff = si2sa_QQ(c, &c, cfRing)
-+ # so we force it back.
-+ z.coef = c
-+ #pSetCoeff0(z,c)
-+ #p_SetCoeff(z, c, cfRing)
-+ # rather than trying to let Cython and C++ automagically modify it
-+ #coeff = si2sa_QQ(p_GetCoeff(z, cfRing), cfRing)
-+ e = p_GetExp(z, 1, cfRing)
- if e == 0:
- ret = ret + coeff
- elif coeff != 0:
- ret = ret + coeff * a**e
-- z = <napoly*>pNext(<poly*>z)
-+ z = <poly*>pNext(<poly*>z)
- return base(ret)
-
- cdef inline object si2sa_ZZmod(number *n, ring *_ring, object base):
-@@ -322,13 +328,15 @@ cdef inline object si2sa_ZZmod(number *n, ring *_ring, object base):
- 3
- """
- cdef Integer ret
-- if _ring.ringtype == 1:
-+ if _ring.cf.type == n_Z2m:
- return base(<long>n)
-- else:
-+ elif _ring.cf.type == n_Znm or _ring.cf.type == n_Zn:
- ret = Integer()
- ret.set_from_mpz(<mpz_ptr>n)
- return base(ret)
-
-+ return base(_ring.cf.cfInt(n,_ring.cf))
-+
- cdef number *sa2si_QQ(Rational r, ring *_ring):
- """
- TESTS::
-@@ -344,44 +352,39 @@ cdef number *sa2si_QQ(Rational r, ring *_ring):
- 12345678901234567890/23
- """
- if _ring != currRing: rChangeCurrRing(_ring)
-- return nlInit2gmp( mpq_numref(r.value), mpq_denref(r.value) )
-+ return nlInit2gmp( mpq_numref(r.value), mpq_denref(r.value),_ring.cf )
-
- cdef number *sa2si_GFqGivaro(int quo, ring *_ring):
- """
- """
- if _ring != currRing: rChangeCurrRing(_ring)
-- cdef number *n1
-- cdef number *n2
-- cdef number *a
-- cdef number *coeff
-- cdef number *apow1
-- cdef number *apow2
-- cdef int b = - _ring.ch
-+ cdef number *n1, *n2, *a, *coeff, *apow1, *apow2
-+ cdef int b = _ring.cf.ch
-
-- a = naPar(1)
-+ a = _ring.cf.cfParameter(1, _ring.cf)
-
-- apow1 = naInit(1, _ring)
-- n1 = naInit(0, _ring)
-+ apow1 = _ring.cf.cfInit(1, _ring.cf)
-+ n1 = _ring.cf.cfInit(0, _ring.cf)
-
- while quo!=0:
-- coeff = naInit(quo%b, _ring)
-+ coeff = _ring.cf.cfInit(quo%b, _ring.cf)
-
-- if not naIsZero(coeff):
-- apow2 = naMult(coeff, apow1)
-- n2 = naAdd(apow2, n1)
-- naDelete(&apow2, _ring)
-- naDelete(&n1, _ring)
-+ if not _ring.cf.cfIsZero(coeff, _ring.cf):
-+ apow2 = _ring.cf.cfMult(coeff, apow1, _ring.cf)
-+ n2 = _ring.cf.cfAdd(apow2, n1, _ring.cf)
-+ _ring.cf.cfDelete(&apow2, _ring.cf)
-+ _ring.cf.cfDelete(&n1, _ring.cf)
- n1 = n2
-
-- apow2 = naMult(apow1, a)
-- naDelete(&apow1, _ring)
-+ apow2 = _ring.cf.cfMult(apow1, a, _ring.cf)
-+ _ring.cf.cfDelete(&apow1, _ring.cf)
- apow1 = apow2
-
- quo = quo/b
-- naDelete(&coeff, _ring)
-+ _ring.cf.cfDelete(&coeff, _ring.cf)
-
-- naDelete(&apow1, _ring)
-- naDelete(&a, _ring)
-+ _ring.cf.cfDelete(&apow1, _ring.cf)
-+ _ring.cf.cfDelete(&a, _ring.cf)
- return n1
-
- cdef number *sa2si_GFqNTLGF2E(FFgf2eE elem, ring *_ring):
-@@ -398,30 +401,30 @@ cdef number *sa2si_GFqNTLGF2E(FFgf2eE elem, ring *_ring):
- cdef GF2X_c rep = GF2E_rep(elem.x)
-
- if GF2X_deg(rep) >= 1:
-- n1 = naInit(0, _ring)
-- a = naPar(1)
-- apow1 = naInit(1, _ring)
-+ n1 = _ring.cf.cfInit(0, _ring.cf)
-+ a = _ring.cf.cfParameter(1,_ring.cf)
-+ apow1 = _ring.cf.cfInit(1, _ring.cf)
-
- for i from 0 <= i <= GF2X_deg(rep):
-- coeff = naInit(GF2_conv_to_long(GF2X_coeff(rep,i)), _ring)
-+ coeff = _ring.cf.cfInit(GF2_conv_to_long(GF2X_coeff(rep,i)), _ring.cf)
-
-- if not naIsZero(coeff):
-- apow2 = naMult(coeff, apow1)
-- n2 = naAdd(apow2, n1)
-- naDelete(&apow2, _ring)
-- naDelete(&n1, _ring);
-+ if not _ring.cf.cfIsZero(coeff,_ring.cf):
-+ apow2 = _ring.cf.cfMult(coeff, apow1,_ring.cf)
-+ n2 = _ring.cf.cfAdd(apow2, n1,_ring.cf)
-+ _ring.cf.cfDelete(&apow2, _ring.cf)
-+ _ring.cf.cfDelete(&n1, _ring.cf);
- n1 = n2
-
-- apow2 = naMult(apow1, a)
-- naDelete(&apow1, _ring)
-+ apow2 = _ring.cf.cfMult(apow1, a,_ring.cf)
-+ _ring.cf.cfDelete(&apow1, _ring.cf)
- apow1 = apow2
-
-- naDelete(&coeff, _ring)
-+ _ring.cf.cfDelete(&coeff, _ring.cf)
-
-- naDelete(&apow1, _ring)
-- naDelete(&a, _ring)
-+ _ring.cf.cfDelete(&apow1, _ring.cf)
-+ _ring.cf.cfDelete(&a, _ring.cf)
- else:
-- n1 = naInit(GF2_conv_to_long(GF2X_coeff(rep,0)), _ring)
-+ n1 = _ring.cf.cfInit(GF2_conv_to_long(GF2X_coeff(rep,0)), _ring.cf)
-
- return n1
-
-@@ -439,30 +442,30 @@ cdef number *sa2si_GFq_generic(object elem, ring *_ring):
-
- if _ring != currRing: rChangeCurrRing(_ring)
- if elem.degree() > 0:
-- n1 = naInit(0, _ring)
-- a = naPar(1)
-- apow1 = naInit(1, _ring)
-+ n1 = _ring.cf.cfInit(0, _ring.cf)
-+ a = _ring.cf.cfParameter(1,_ring.cf)
-+ apow1 = _ring.cf.cfInit(1, _ring.cf)
-
- for i from 0 <= i <= elem.degree():
-- coeff = naInit(int(elem[i]), _ring)
-+ coeff = _ring.cf.cfInit(int(elem[i]), _ring.cf)
-
-- if not naIsZero(coeff):
-- apow2 = naMult(coeff, apow1)
-- n2 = naAdd(apow2, n1)
-- naDelete(&apow2, _ring)
-- naDelete(&n1, _ring);
-+ if not _ring.cf.cfIsZero(coeff,_ring.cf):
-+ apow2 = _ring.cf.cfMult(coeff, apow1,_ring.cf)
-+ n2 = _ring.cf.cfAdd(apow2, n1,_ring.cf)
-+ _ring.cf.cfDelete(&apow2, _ring.cf)
-+ _ring.cf.cfDelete(&n1, _ring.cf);
- n1 = n2
-
-- apow2 = naMult(apow1, a)
-- naDelete(&apow1, _ring)
-+ apow2 = _ring.cf.cfMult(apow1, a,_ring.cf)
-+ _ring.cf.cfDelete(&apow1, _ring.cf)
- apow1 = apow2
-
-- naDelete(&coeff, _ring)
-+ _ring.cf.cfDelete(&coeff, _ring.cf)
-
-- naDelete(&apow1, _ring)
-- naDelete(&a, _ring)
-+ _ring.cf.cfDelete(&apow1, _ring.cf)
-+ _ring.cf.cfDelete(&a, _ring.cf)
- else:
-- n1 = naInit(int(elem), _ring)
-+ n1 = _ring.cf.cfInit(int(elem), _ring.cf)
-
- return n1
-
-@@ -477,32 +480,58 @@ cdef number *sa2si_NF(object elem, ring *_ring):
- cdef number *naCoeff
- cdef number *apow1
- cdef number *apow2
-+
-+ cdef nMapFunc nMapFuncPtr = NULL;
-+
-+ nMapFuncPtr = naSetMap(_ring.cf, currRing.cf) # choose correct mapping function
-+
-+ if (nMapFuncPtr is NULL):
-+ raise RuntimeError, "Failed to determine nMapFuncPtr"
-+
- elem = list(elem)
-
- if _ring != currRing: rChangeCurrRing(_ring)
-- n1 = naInit(0, _ring)
-- a = naPar(1)
-- apow1 = naInit(1, _ring)
--
-+ n1 = _ring.cf.cfInit(0, _ring.cf)
-+ a = _ring.cf.cfParameter(1,_ring.cf)
-+ apow1 = _ring.cf.cfInit(1, _ring.cf)
-+
-+ cdef char *_name
-+
-+ # the result of nlInit2gmp() is in a plain polynomial ring over QQ (not an extension ring!),
-+ # so we hace to get/create one :
-+ #
-+ # todo: reuse qqr/ get an existing Singular polynomial ring over Q.
-+ varname = "a"
-+ _name = omStrDup(varname)
-+ cdef char **_ext_names
-+ _ext_names = <char**>omAlloc0(sizeof(char*))
-+ _ext_names[0] = omStrDup(_name)
-+ qqr = rDefault( 0, 1, _ext_names);
-+ rComplete(qqr,1)
-+ qqr.ShortOut = 0
-+
-+
-+ nMapFuncPtr = naSetMap( qqr.cf , _ring.cf ) # choose correct mapping function
-+ cdef poly *_p
- for i from 0 <= i < len(elem):
-- nlCoeff = nlInit2gmp( mpq_numref((<Rational>elem[i]).value), mpq_denref((<Rational>elem[i]).value) )
-- naCoeff = naMap00(nlCoeff)
-- nlDelete(&nlCoeff, _ring)
-+ nlCoeff = nlInit2gmp( mpq_numref((<Rational>elem[i]).value), mpq_denref((<Rational>elem[i]).value), qqr.cf )
-+ naCoeff = nMapFuncPtr(nlCoeff, qqr.cf , _ring.cf )
-+ nlDelete(&nlCoeff, _ring.cf)
-
- # faster would be to assign the coefficient directly
-- apow2 = naMult(naCoeff, apow1)
-- n2 = naAdd(apow2, n1)
-- naDelete(&apow2, _ring)
-- naDelete(&n1, _ring);
-- naDelete(&naCoeff, _ring)
-+ apow2 = _ring.cf.cfMult(naCoeff, apow1,_ring.cf)
-+ n2 = _ring.cf.cfAdd(apow2, n1,_ring.cf)
-+ _ring.cf.cfDelete(&apow2, _ring.cf)
-+ _ring.cf.cfDelete(&n1, _ring.cf);
-+ _ring.cf.cfDelete(&naCoeff, _ring.cf)
- n1 = n2
-
-- apow2 = naMult(apow1, a)
-- naDelete(&apow1, _ring)
-+ apow2 = _ring.cf.cfMult(apow1, a,_ring.cf)
-+ _ring.cf.cfDelete(&apow1, _ring.cf)
- apow1 = apow2
-
-- naDelete(&apow1, _ring)
-- naDelete(&a, _ring)
-+ _ring.cf.cfDelete(&apow1, _ring.cf)
-+ _ring.cf.cfDelete(&a, _ring.cf)
-
- return n1
-
-@@ -521,7 +550,7 @@ cdef number *sa2si_ZZ(Integer d, ring *_ring):
- 12345678901234567890
- """
- if _ring != currRing: rChangeCurrRing(_ring)
-- cdef number *n = nrzInit(0, _ring)
-+ cdef number *n = nrzInit(0, _ring.cf)
- mpz_set(<mpz_ptr>n, d.value)
- return <number*>n
-
-@@ -563,20 +592,49 @@ cdef inline number *sa2si_ZZmod(IntegerMod_abstract d, ring *_ring):
- """
- nr2mModul = d.parent().characteristic()
- if _ring != currRing: rChangeCurrRing(_ring)
-- cdef int _d
-- if _ring.ringtype == 1:
-+
-+ cdef number *nn
-+
-+ cdef int64_t _d
-+ cdef char *_name
-+ cdef char **_ext_names
-+ varname = "a"
-+
-+ cdef nMapFunc nMapFuncPtr = NULL;
-+
-+ if _ring.cf.type == n_Z2m:
- _d = long(d)
-- return nr2mMapZp(<number *>_d)
-- else:
-+ return nr2mMapZp(<number *>_d, currRing.cf, _ring.cf)
-+ elif _ring.cf.type == n_Zn or _ring.cf.type == n_Znm:
- lift = d.lift()
-- return nrnMapGMP(<number *>((<Integer>lift).value))
-+
-+ # if I understand nrnMapGMP/nMapFuncPtr correctly we need first
-+ # a source value in ZZr
-+ # create ZZr, a plain polynomial ring over ZZ with one variable.
-+ #
-+ # todo (later): reuse ZZr
-+ _name = omStrDup(varname)
-+ _ext_names = <char**>omAlloc0(sizeof(char*))
-+ _ext_names[0] = omStrDup(_name)
-+ _cf = nInitChar( n_Z, NULL) # integer coefficient ring
-+ ZZr = rDefault (_cf ,1, _ext_names)
-+ rComplete(ZZr,1)
-+ ZZr.ShortOut = 0
-+
-+ nn = nrzInit(0, ZZr.cf)
-+ mpz_set(<mpz_ptr>nn, (<Integer>lift).value)
-+ nMapFuncPtr = nrnSetMap( ZZr.cf, _ring.cf)
-+
-+ return nMapFuncPtr(nn, ZZr.cf, _ring.cf)
-+ else:
-+ raise ValueError
-
- cdef object si2sa(number *n, ring *_ring, object base):
- if isinstance(base, FiniteField_prime_modn):
-- return base(_ring.cf.n_Int(n, _ring))
-+ return base(_ring.cf.cfInt(n, _ring.cf))
-
- elif isinstance(base, RationalField):
-- return si2sa_QQ(n,_ring)
-+ return si2sa_QQ(n,&n,_ring)
-
- elif isinstance(base, IntegerRing_class):
- return si2sa_ZZ(n,_ring)
-@@ -594,8 +652,8 @@ cdef object si2sa(number *n, ring *_ring, object base):
- return si2sa_NF(n, _ring, base)
-
- elif isinstance(base, IntegerModRing_generic):
-- if _ring.ringtype == 0:
-- return base(_ring.cf.n_Int(n, _ring))
-+ if _ring.cf.type == n_unknown:
-+ return base(_ring.cf.cfInt(n, _ring.cf))
- return si2sa_ZZmod(n, _ring, base)
-
- else:
-@@ -624,7 +682,7 @@ cdef number *sa2si(Element elem, ring * _ring):
- elif isinstance(elem._parent, NumberField) and elem._parent.is_absolute():
- return sa2si_NF(elem, _ring)
- elif isinstance(elem._parent, IntegerModRing_generic):
-- if _ring.ringtype == 0:
-+ if _ring.cf.type == n_unknown:
- return n_Init(int(elem),_ring)
- return sa2si_ZZmod(elem, _ring)
- else:
-@@ -654,45 +712,36 @@ cdef extern from "dlfcn.h":
- cdef long RTLD_LAZY
- cdef long RTLD_GLOBAL
-
--cdef int overflow_check(long e, ring *_ring) except -1:
-+cdef int overflow_check(unsigned long e, ring *_ring) except -1:
- """
-- Raises an ``OverflowError`` if e is > max degree per variable,
-- or if it is not acceptable for Singular as exponent of the
-- given ring.
-+ Raise an ``OverflowError`` if e is > max degree per variable.
-
- INPUT:
-
-- - ``e`` - some integer representing a degree.
-- - ``_ring`` - a pointer to some ring.
-+ - ``e`` -- some integer representing a degree.
-
-- TESTS:
-+ - ``_ring`` -- a pointer to some ring.
-
-- Whether an overflow occurs or not, partially depends
-- on the number of variables in the ring. See :trac:`11856`::
-+ Whether an overflow occurs or not partially depends
-+ on the number of variables in the ring. See trac ticket
-+ :trac:`11856`. With Singular 4, it is by default optimized
-+ for at least 4 variables on 64-bit and 2 variables on 32-bit,
-+ which in both cases makes a maximal default exponent of
-+ 2^16-1.
-
-- sage: P.<x,y,z> = QQ[]
-- sage: y^2^30
-- Traceback (most recent call last):
-- ...
-- OverflowError: Exponent overflow (1073741824).
-- sage: P.<x,y> = QQ[]
-- sage: y^2^30
-- y^1073741824 # 64-bit
-- Traceback (most recent call last): # 32-bit
-- ... # 32-bit
-- OverflowError: Exponent overflow (1073741824). # 32-bit
-+ EXAMPLES::
-
-- sage: x^2^30*x^2^30
-+ sage: P.<x,y> = QQ[]
-+ sage: y^(2^16-1)
-+ y^65535
-+ sage: y^2^16
- Traceback (most recent call last):
- ...
-- OverflowError: Exponent overflow (2147483648). # 64-bit
-- OverflowError: Exponent overflow (1073741824). # 32-bit
--
-+ OverflowError: exponent overflow (65536)
- """
-- # 2^31 (pPower takes ints)
-- if unlikely(e >= _ring.bitmask or e >= 2**31):
-- raise OverflowError("Exponent overflow (%d)."%(e))
-- return 0
-+ if unlikely(e > _ring.bitmask):
-+ raise OverflowError("exponent overflow (%d)"%(e))
-+
-
- cdef init_libsingular():
- """
-@@ -712,18 +761,26 @@ cdef init_libsingular():
-
- cdef void *handle = NULL
-
-- for extension in ["so", "dylib", "dll"]:
-- lib = os.environ['SAGE_LOCAL']+"/lib/libsingular."+extension
-- if os.path.exists(lib):
-- handle = dlopen(lib, RTLD_GLOBAL|RTLD_LAZY)
-- if not handle:
-- err = dlerror()
-- if err:
-- print(err)
-- break
-+ import os
-+ from sage.env import SAGE_LOCAL
-+ UNAME = os.uname()[0]
-+ if UNAME[:6] == "CYGWIN":
-+ extension = "dll"
-+ elif UNAME == "Darwin":
-+ extension = "dylib"
-+ else:
-+ extension = "so"
-+
-+ # library name changed from libsingular to libSingular btw 3.x and 4.x
-+ lib = SAGE_LOCAL+"/lib/libSingular."+extension
-+
-+ if not os.path.exists(lib):
-+ raise ImportError("cannot locate Singular library ({})".format(lib))
-
-- if handle == NULL:
-- raise ImportError("cannot load libSINGULAR library")
-+ handle = dlopen(lib, RTLD_GLOBAL|RTLD_LAZY)
-+ if not handle:
-+ err = dlerror()
-+ raise ImportError("cannot load Singular library ({})".format(err))
-
- # load SINGULAR
- siInit(lib)
-@@ -737,9 +794,7 @@ cdef init_libsingular():
- _saved_options = (int(singular_options), 0, 0)
- _saved_verbose_options = int(singular_verbose_options)
-
-- On(SW_USE_NTL)
-- On(SW_USE_NTL_GCD_0)
-- On(SW_USE_NTL_GCD_P)
-+ #On(SW_USE_NTL)
- On(SW_USE_EZGCD)
- Off(SW_USE_NTL_SORT)
-
-diff --git a/src/sage/misc/cython.py b/src/sage/misc/cython.py
-index 2348c4b..8abb91c 100644
---- a/src/sage/misc/cython.py
-+++ b/src/sage/misc/cython.py
-@@ -310,7 +310,7 @@ def cython(filename, verbose=False, compile_message=False,
- sage: code = [
- ....: "#clang C++",
- ....: "#cinclude %s/include/singular %s/include/factory"%(SAGE_LOCAL, SAGE_LOCAL),
-- ....: "#clib m readline singular givaro ntl gmpxx gmp",
-+ ....: "#clib m readline Singular givaro ntl gmpxx gmp",
- ....: "from sage.rings.polynomial.multi_polynomial_libsingular cimport MPolynomial_libsingular",
- ....: "from sage.libs.singular.polynomial cimport singular_polynomial_pow",
- ....: "def test(MPolynomial_libsingular p):",
-diff --git a/src/sage/rings/multi_power_series_ring_element.py b/src/sage/rings/multi_power_series_ring_element.py
-index 6388859..142f38b 100644
---- a/src/sage/rings/multi_power_series_ring_element.py
-+++ b/src/sage/rings/multi_power_series_ring_element.py
-@@ -1690,9 +1690,9 @@ class MPowerSeries(PowerSeries):
- sage: aa.is_gen()
- False
- sage: aa.integral(aa)
-- -2*a^2
-+ 3*a^2
- sage: aa.integral(a)
-- -2*a^2
-+ 3*a^2
- """
- P = self.parent()
- R = P.base_ring()
-diff --git a/src/sage/rings/polynomial/multi_polynomial_ideal.py b/src/sage/rings/polynomial/multi_polynomial_ideal.py
-index 816c448..53df08a 100644
---- a/src/sage/rings/polynomial/multi_polynomial_ideal.py
-+++ b/src/sage/rings/polynomial/multi_polynomial_ideal.py
-@@ -90,8 +90,8 @@ Or we can work with `\ZZ/17\ZZ` directly::
-
- sage: a^2 + b^2 == 0
- True
-- sage: a^3 - b^2
-- -a*b^2 - b^2
-+ sage: a^3 - b^2 == -a*b^2 - b^2 == 16*a*b^2 + 16*b^2
-+ True
- sage: (a+b)^17
- a*b^16 + b^17
- sage: S(17) == 0
-@@ -187,10 +187,10 @@ when the system has no solutions over the rationals.
- sage: I.change_ring(P.change_ring( GF(11777 ))).groebner_basis()
- [x + 5633, y - 3007, z - 2626]
-
-- The Groebner basis modulo any product of the prime factors is also non-trivial. ::
-+ The Groebner basis modulo any product of the prime factors is also non-trivial::
-
- sage: I.change_ring(P.change_ring( IntegerModRing(2*7) )).groebner_basis()
-- [x + y + z, y^2 + 3*y, y*z + 11*y + 4, 2*y + 6, z^2 + 3, 2*z + 10]
-+ [x + 3*y + 11*z, y^2 + 3*y, y*z + 11*y + 4, 2*y + 6, z^2 + 3, 2*z + 10]
-
- Modulo any other prime the Groebner basis is trivial so there are
- no other solutions. For example::
-@@ -712,10 +712,10 @@ class MPolynomialIdeal_singular_repr(
- sage: p = z^2 + 1; q = z^3 + 2
- sage: I = (p*q^2, y-z^2)*R
- sage: pd = I.complete_primary_decomposition(); pd
-- [(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-- Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field),
-- (Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-- Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
-+ [(Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-+ Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field),
-+ (Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-+ Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
-
- sage: I.primary_decomposition_complete(algorithm = 'gtz')
- [(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-@@ -832,8 +832,8 @@ class MPolynomialIdeal_singular_repr(
- sage: p = z^2 + 1; q = z^3 + 2
- sage: I = (p*q^2, y-z^2)*R
- sage: pd = I.primary_decomposition(); pd
-- [Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-- Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field]
-+ [Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-+ Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field]
-
- ::
-
-@@ -904,8 +904,8 @@ class MPolynomialIdeal_singular_repr(
- sage: p = z^2 + 1; q = z^3 + 2
- sage: I = (p*q^2, y-z^2)*R
- sage: pd = I.associated_primes(); pd
-- [Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-- Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field]
-+ [Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-+ Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field]
-
- ALGORITHM:
-
-@@ -3623,9 +3623,12 @@ class MPolynomialIdeal( MPolynomialIdeal_singular_repr, \
- sage: P.<a,b,c> = PolynomialRing(ZZ,3)
- sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
- sage: I.groebner_basis()
-- [b^3 - 23*b*c^2 + 3*b^2 + 5*b*c, 2*b*c^2 - 6*c^3 - b^2 - b*c + 2*c^2,
-- 42*c^3 + 5*b^2 + 4*b*c - 14*c^2, 2*b^2 + 6*b*c + 6*c^2 - b - 2*c,
-- 10*b*c + 12*c^2 - b - 4*c, a + 2*b + 2*c - 1]
-+ [b^3 - 181*b*c^2 + 222*c^3 - 26*b*c - 146*c^2 + 19*b + 24*c,
-+ 2*b*c^2 - 48*c^3 + 3*b*c + 22*c^2 - 2*b - 2*c,
-+ 42*c^3 + 45*b^2 + 54*b*c + 22*c^2 - 13*b - 12*c,
-+ 2*b^2 + 6*b*c + 6*c^2 - b - 2*c,
-+ 10*b*c + 12*c^2 - b - 4*c,
-+ a + 2*b + 2*c - 1]
-
- ::
-
-@@ -3642,7 +3645,7 @@ class MPolynomialIdeal( MPolynomialIdeal_singular_repr, \
- sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
- sage: I.groebner_basis()
- [b*c^2 + 992*b*c + 712*c^2 + 332*b + 96*c,
-- 2*c^3 + 589*b*c + 862*c^2 + 762*b + 268*c,
-+ 2*c^3 + 214*b*c + 862*c^2 + 762*b + 268*c,
- b^2 + 438*b*c + 281*b,
- 5*b*c + 156*c^2 + 112*b + 948*c,
- 50*c^2 + 600*b + 650*c, a + 2*b + 2*c + 999, 125*b]
-@@ -3652,7 +3655,6 @@ class MPolynomialIdeal( MPolynomialIdeal_singular_repr, \
- sage: R.<x,y,z> = PolynomialRing(Zmod(2233497349584))
- sage: I = R.ideal([z*(x-3*y), 3^2*x^2-y*z, z^2+y^2])
- sage: I.groebner_basis()
-- verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow toy implementation.
- [2*z^4, y*z^2 + 81*z^3, 248166372176*z^3, 9*x^2 - y*z, y^2 + z^2, x*z +
- 2233497349581*y*z, 248166372176*y*z]
-
-diff --git a/src/sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx b/src/sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx
-index b66653c..902283d 100644
---- a/src/sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx
-+++ b/src/sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx
-@@ -52,11 +52,12 @@ Two examples from the Mathematica documentation (done in Sage):
- include "cysignals/signals.pxi"
-
- from sage.libs.singular.decl cimport tHomog, number, IDELEMS, p_Copy, rChangeCurrRing
--from sage.libs.singular.decl cimport idInit, id_Delete, currRing, currQuotient, Sy_bit, OPT_REDSB
--from sage.libs.singular.decl cimport scKBase, poly, testHomog, idSkipZeroes, idRankFreeModule, kStd
-+from sage.libs.singular.decl cimport idInit, id_Delete, currRing, Sy_bit, OPT_REDSB
-+from sage.libs.singular.decl cimport scKBase, poly, testHomog, idSkipZeroes, id_RankFreeModule, kStd
- from sage.libs.singular.decl cimport OPT_REDTAIL, singular_options, kInterRed, t_rep_gb, p_GetCoeff
- from sage.libs.singular.decl cimport pp_Mult_nn, p_Delete, n_Delete
- from sage.libs.singular.decl cimport rIsPluralRing
-+from sage.libs.singular.decl cimport n_unknown, n_Zp, n_Q, n_R, n_GF, n_long_R, n_algExt,n_transExt,n_long_C, n_Z, n_Zn, n_Znm, n_Z2m, n_CF
-
- from sage.rings.polynomial.multi_polynomial_libsingular cimport new_MP
- from sage.rings.polynomial.plural cimport new_NCP
-@@ -174,7 +175,7 @@ def kbase_libsingular(I):
-
- cdef ideal *i = sage_ideal_to_singular_ideal(I)
- cdef ring *r = currRing
-- cdef ideal *q = currQuotient
-+ cdef ideal *q = currRing.qideal
-
- cdef ideal *result
- singular_options = singular_options | Sy_bit(OPT_REDSB)
-@@ -244,7 +245,7 @@ def slimgb_libsingular(I):
- id_Delete(&i, r)
- raise TypeError("ordering must be global for slimgb")
-
-- if i.rank < idRankFreeModule(i, r):
-+ if i.rank < id_RankFreeModule(i, r):
- id_Delete(&i, r)
- raise TypeError
-
-@@ -274,12 +275,12 @@ def interred_libsingular(I):
- sage: P.<x,y,z> = PolynomialRing(ZZ)
- sage: I = ideal( x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1 )
- sage: I.interreduced_basis()
-- [y^3 - x*y, z^3 - x, x^2 - 3*y, 9*y^2 - y*z + 1]
-+ [y*z^2 - 81*x*y - 9*y - z, z^3 - x, x^2 - 3*y, 9*y^2 - y*z + 1]
-
- sage: P.<x,y,z> = PolynomialRing(QQ)
- sage: I = ideal( x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1 )
- sage: I.interreduced_basis()
-- [y*z^2 - 81*x*y - 9*y - z, z^3 - x, x^2 - 3*y, y^2 - 1/9*y*z + 1/9]
-+ [y*z^2 - 81*x*y - 9*y - z, z^3 - x, x^2 - 3*y, 9*y^2 - y*z + 1]
- """
- global singular_options
-
-@@ -296,7 +297,7 @@ def interred_libsingular(I):
- return Sequence([], check=False, immutable=True)
- except AttributeError:
- pass
--
-+
- i = sage_ideal_to_singular_ideal(I)
- r = currRing
-
-@@ -309,12 +310,12 @@ def interred_libsingular(I):
-
-
- # divide head by coefficients
-- if r.ringtype == 0:
-+ if r.cf.type == n_unknown:
- for j from 0 <= j < IDELEMS(result):
- p = result.m[j]
- if p:
- n = p_GetCoeff(p,r)
-- n = r.cf.nInvers(n)
-+ n = r.cf.cfInvers(n,r.cf)
- result.m[j] = pp_Mult_nn(p, n, r)
- p_Delete(&p,r)
- n_Delete(&n,r)
-@@ -325,5 +326,3 @@ def interred_libsingular(I):
-
- id_Delete(&result,r)
- return res
--
--
-diff --git a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx
-index 4210fd4..81f64bb 100644
---- a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx
-+++ b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx
-@@ -170,19 +170,20 @@ include "cysignals/signals.pxi"
-
- # singular types
- from sage.libs.singular.decl cimport ring, poly, ideal, intvec, number, currRing
-+from sage.libs.singular.decl cimport n_unknown, n_Zp, n_Q, n_R, n_GF, n_long_R, n_algExt,n_transExt,n_long_C, n_Z, n_Zn, n_Znm, n_Z2m, n_CF
-
- # singular functions
- from sage.libs.singular.decl cimport (
-- errorreported, libfac_interruptflag,
-+ errorreported,
- p_ISet, rChangeCurrRing, p_Copy, p_Init, p_SetCoeff, p_Setm, p_SetExp, p_Add_q,
- p_NSet, p_GetCoeff, p_Delete, p_GetExp, pNext, rRingVar, omAlloc0, omStrDup,
- omFree, pDivide, p_SetCoeff0, n_Init, p_DivisibleBy, pLcm, p_LmDivisibleBy,
- pDivide, p_IsConstant, p_ExpVectorEqual, p_String, p_LmInit, n_Copy,
-- p_IsUnit, pInvers, p_Head, idInit, fast_map, id_Delete,
-- pIsHomogeneous, pHomogen, p_Totaldegree, singclap_pdivide, singclap_factorize,
-+ p_IsUnit, pInvers, p_Head, idInit, fast_map_common_subexp, id_Delete,
-+ p_IsHomogeneous, pHomogen, p_Totaldegree,pLDeg1_Totaldegree, singclap_pdivide, singclap_factorize,
- idLift, IDELEMS, On, Off, SW_USE_CHINREM_GCD, SW_USE_EZGCD,
- p_LmIsConstant, pTakeOutComp1, singclap_gcd, pp_Mult_qq, p_GetMaxExp,
-- pLength, kNF, singclap_isSqrFree, p_Neg, p_Minus_mm_Mult_qq, p_Plus_mm_Mult_qq,
-+ pLength, kNF, p_Neg, p_Minus_mm_Mult_qq, p_Plus_mm_Mult_qq,
- pDiff, singclap_resultant, p_Normalize,
- prCopyR, prCopyR_NoSort )
-
-@@ -219,10 +220,12 @@ from sage.rings.integer cimport Integer
- from sage.rings.finite_rings.integer_mod_ring import is_IntegerModRing
- from sage.rings.number_field.number_field_base cimport NumberField
-
--from sage.arith.all import gcd
-+from sage.rings.arith import gcd
- from sage.structure.element import coerce_binop
-
- from sage.structure.parent cimport Parent
-+from sage.structure.parent_base cimport ParentWithBase
-+from sage.structure.parent_gens cimport ParentWithGens
- from sage.structure.category_object cimport CategoryObject
-
- from sage.structure.element cimport EuclideanDomainElement
-@@ -586,6 +589,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
- Coercion from SINGULAR elements::
-
- sage: P._singular_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 3
- // block 1 : ordering dp
-@@ -806,7 +810,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
- if element.parent() is base_ring:
- # shortcut for GF(p)
- if isinstance(base_ring, FiniteField_prime_modn):
-- _p = p_ISet(int(element) % _ring.ch, _ring)
-+ _p = p_ISet(int(element) % _ring.cf.ch, _ring)
- else:
- _n = sa2si(element,_ring)
- _p = p_NSet(_n, _ring)
-@@ -830,7 +834,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- elif isinstance(element, int) or isinstance(element, long):
- if isinstance(base_ring, FiniteField_prime_modn):
-- _p = p_ISet(element % _ring.ch, _ring)
-+ _p = p_ISet(element % _ring.cf.ch, _ring)
- else:
- _n = sa2si(base_ring(element), _ring)
- _p = p_NSet(_n, _ring)
-@@ -977,7 +981,6 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- if is_Macaulay2Element(element):
- return self(element.external_string())
--
- try:
- return self(str(element))
- except TypeError:
-@@ -1174,6 +1177,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: P.<x,y,z> = QQ[]
- sage: P._singular_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 3
- // block 1 : ordering dp
-@@ -1189,6 +1193,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
- sage: k.<a> = GF(3^3)
- sage: P.<x,y,z> = PolynomialRing(k,3)
- sage: P._singular_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 3
- // 1 parameter : a
- // minpoly : (a^3-a+1)
-@@ -1206,6 +1211,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
- TESTS:
- sage: P.<x> = QQ[]
- sage: P._singular_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-@@ -1245,6 +1251,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: P.<x,y,z> = QQ[]
- sage: P._singular_init_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 3
- // block 1 : ordering dp
-@@ -1259,6 +1266,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
- sage: w = var('w')
- sage: R.<x,y> = PolynomialRing(NumberField(w^2+1,'s'))
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // 1 parameter : s
- // minpoly : (s^2+1)
-@@ -1269,6 +1277,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: R = PolynomialRing(GF(2**8,'a'),10,'x', order='invlex')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 2
- // 1 parameter : a
- // minpoly : (a^8+a^4+a^3+a^2+1)
-@@ -1279,6 +1288,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: R = PolynomialRing(GF(127),2,'x', order='invlex')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 127
- // number of vars : 2
- // block 1 : ordering rp
-@@ -1287,6 +1297,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: R = PolynomialRing(QQ,2,'x', order='invlex')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering rp
-@@ -1295,6 +1306,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: R = PolynomialRing(QQ,2,'x', order='degneglex')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering a
-@@ -1306,6 +1318,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: R = PolynomialRing(QQ,'x')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-@@ -1314,6 +1327,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: R = PolynomialRing(GF(127),'x')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 127
- // number of vars : 1
- // block 1 : ordering lp
-@@ -1322,7 +1336,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: R = ZZ['x,y']
- sage: singular(R)
-- // coeff. ring is : Integers
-+ polynomial ring, over a domain, global ordering
-+ // coeff. ring is : integer
- // number of vars : 2
- // block 1 : ordering dp
- // : names x y
-@@ -1330,6 +1345,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: R = IntegerModRing(1024)['x,y']
- sage: singular(R)
-+ polynomial ring, over a ring (with zero-divisors), global ordering
- // coeff. ring is : Z/2^10
- // number of vars : 2
- // block 1 : ordering dp
-@@ -1338,7 +1354,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: R = IntegerModRing(15)['x,y']
- sage: singular(R)
-- // coeff. ring is : Z/15
-+ polynomial ring, over a ring (with zero-divisors), global ordering
-+ // coeff. ring is : ZZ/15
- // number of vars : 2
- // block 1 : ordering dp
- // : names x y
-@@ -1348,6 +1365,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
-
- sage: P.<x> = QQ[]
- sage: P._singular_init_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-@@ -1370,14 +1388,14 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
- # singular converts to bits from base_10 in mpr_complex.cc by:
- # size_t bits = 1 + (size_t) ((float)digits * 3.5);
- precision = base_ring.precision()
-- digits = sage.arith.all.ceil((2*precision - 2)/7.0)
-+ digits = sage.rings.arith.ceil((2*precision - 2)/7.0)
- self.__singular = singular.ring("(real,%d,0)"%digits, _vars, order=order)
-
- elif is_ComplexField(base_ring):
- # singular converts to bits from base_10 in mpr_complex.cc by:
- # size_t bits = 1 + (size_t) ((float)digits * 3.5);
- precision = base_ring.precision()
-- digits = sage.arith.all.ceil((2*precision - 2)/7.0)
-+ digits = sage.rings.arith.ceil((2*precision - 2)/7.0)
- self.__singular = singular.ring("(complex,%d,0,I)"%digits, _vars, order=order)
-
- elif base_ring.is_prime_field():
-@@ -1615,8 +1633,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
- 9/4
-
- sage: P.monomial_quotient(x,y) # Note the wrong result
-- x*y^1048575*z^1048575 # 64-bit
-- x*y^65535*z^65535 # 32-bit
-+ x*y^65535*z^65535
-
- sage: P.monomial_quotient(x,P(1))
- x
-@@ -1645,8 +1662,8 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_generic):
- if r!=currRing: rChangeCurrRing(r) # pDivide
- res = pDivide(f._poly, g._poly)
- if coeff:
-- if r.ringtype == 0 or r.cf.nDivBy(p_GetCoeff(f._poly, r), p_GetCoeff(g._poly, r)):
-- n = r.cf.nDiv( p_GetCoeff(f._poly, r) , p_GetCoeff(g._poly, r))
-+ if r.cf.type == n_unknown or r.cf.cfDivBy(p_GetCoeff(f._poly, r), p_GetCoeff(g._poly, r), r.cf):
-+ n = r.cf.cfDiv( p_GetCoeff(f._poly, r) , p_GetCoeff(g._poly, r), r.cf)
- p_SetCoeff0(res, n, r)
- else:
- raise ArithmeticError("Cannot divide these coefficients.")
-@@ -2277,10 +2294,10 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- 9/4*x^2 - 1/4*y^2 - y - 1
-
- sage: P.<x,y> = PolynomialRing(QQ,order='lex')
-- sage: (x^2^30) * x^2^30
-+ sage: (x^2^15) * x^2^15
- Traceback (most recent call last):
- ...
-- OverflowError: Exponent overflow (...).
-+ OverflowError: exponent overflow (...)
- """
- # all currently implemented rings are commutative
- cdef poly *_p
-@@ -2391,10 +2408,10 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- TypeError: non-integral exponents not supported
-
- sage: P.<x,y> = PolynomialRing(QQ,order='lex')
-- sage: (x+y^2^30)^10
-+ sage: (x+y^2^15)^10
- Traceback (most recent call last):
- ....
-- OverflowError: Exponent overflow (...).
-+ OverflowError: exponent overflow (...)
- """
- if type(exp) is not Integer:
- try:
-@@ -2541,7 +2558,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- argument ``std_grading=True``.
-
- sage: tord = TermOrder(matrix([3,0,1,1,1,0,1,0,0]))
-- sage: R.<x,y,z> = PolynomialRing(QQ,'x',3,order=tord)
-+ sage: R.<x,y,z> = PolynomialRing(QQ,3,order=tord)
- sage: (x^3*y+x*z^4).degree()
- 9
- sage: (x^3*y+x*z^4).degree(std_grading=True)
-@@ -2650,10 +2667,10 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
-
- With a matrix term ordering, the grading changes.
- To evaluate the total degree using the standard grading,
-- use the optional argument``std_grading=True``.
-+ use the optional argument``std_grading=True``::
-
- sage: tord=TermOrder(matrix([3,0,1,1,1,0,1,0,0]))
-- sage: R.<x,y,z> = PolynomialRing(QQ,'x',3,order=tord)
-+ sage: R.<x,y,z> = PolynomialRing(QQ,3,order=tord)
- sage: (x^2*y).total_degree()
- 6
- sage: (x^2*y).total_degree(std_grading=True)
-@@ -3114,7 +3131,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- """
- cdef ring *_ring = self._parent_ring
- if(_ring != currRing): rChangeCurrRing(_ring)
-- return bool(pIsHomogeneous(self._poly))
-+ return bool(p_IsHomogeneous(self._poly,_ring))
-
- cpdef _homogenize(self, int var):
- """
-@@ -3184,7 +3201,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- _p = p_Head(self._poly, _ring)
- _n = p_GetCoeff(_p, _ring)
-
-- ret = bool((not self._poly.next) and _ring.cf.nIsOne(_n))
-+ ret = bool((not self._poly.next) and _ring.cf.cfIsOne(_n,_ring.cf))
-
- p_Delete(&_p, _ring)
- return ret
-@@ -3274,17 +3291,16 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- We are catching overflows::
-
- sage: R.<x,y> = QQ[]
-- sage: n=1000; f = x^n
-+ sage: n=100; f = x^n
- sage: try:
- ....: f.subs(x = x^n)
- ....: print("no overflow")
- ....: except OverflowError:
-- ....: print("overflow")
-- overflow # 32-bit
-- x^1000000 # 64-bit
-- no overflow # 64-bit
-+ ....: print "overflow"
-+ x^10000
-+ no overflow
-
-- sage: n=100000;
-+ sage: n=1000;
- sage: try:
- ....: f = x^n
- ....: f.subs(x = x^n)
-@@ -3360,7 +3376,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- if degree > _ring.bitmask:
- id_Delete(&to_id, _ring)
- p_Delete(&_p, _ring)
-- raise OverflowError("Exponent overflow (%d)."%(degree))
-+ raise OverflowError("exponent overflow (%d)"%(degree))
- to_id.m[mi-1] = p_Copy(_f, _ring)
-
- if _p == NULL:
-@@ -3398,7 +3414,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- if degree > _ring.bitmask:
- id_Delete(&to_id, _ring)
- p_Delete(&_p, _ring)
-- raise OverflowError("Exponent overflow (%d)."%(degree))
-+ raise OverflowError("exponent overflow (%d)"%(degree))
- need_map = 1
-
- if _p == NULL:
-@@ -3417,7 +3433,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- from_id.m[0] = _p
-
- rChangeCurrRing(_ring)
-- res_id = fast_map(from_id, _ring, to_id, _ring)
-+ res_id = fast_map_common_subexp(from_id, _ring, to_id, _ring)
- _p = res_id.m[0]
-
- from_id.m[0] = NULL
-@@ -3595,7 +3611,10 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- Univariate Polynomial Ring in x over Rational Field
- """
- cdef poly *p = self._poly
-+ cdef poly *p2 = self._poly
- cdef ring *r = self._parent_ring
-+ cdef long pTotDegMax
-+
- k = self.base_ring()
-
- if not self.is_univariate():
-@@ -3609,12 +3628,20 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- R = self.base_ring()[str(self.variables()[0])]
-
- zero = k(0)
-- coefficients = [zero] * (self.degree() + 1)
-
- if(r != currRing): rChangeCurrRing(r)
-
-+ pTotDegMax = -1
-+ while p2:
-+ pTotDegMax = max(pTotDegMax, p_Totaldegree(p2, r))
-+ p2 = pNext(p2)
-+
-+ coefficients = [zero] * (pTotDegMax + 1)
- while p:
-- coefficients[p_Totaldegree(p, r)] = si2sa(p_GetCoeff(p, r), r, k)
-+ pTotDeg = p_Totaldegree(p, r)
-+ if ( pTotDeg >= len(coefficients) or pTotDeg < 0 ):
-+ raise IndexError("list index("+str(pTotDeg)+" out of range(0-"+str(len(coefficients))+")")
-+ coefficients[pTotDeg] = si2sa(p_GetCoeff(p, r), r, k)
- p = pNext(p)
-
- return R(coefficients)
-@@ -3931,8 +3958,8 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- _self = <MPolynomial_libsingular>self
- _right = <MPolynomial_libsingular>right
-
-- if r.ringtype != 0:
-- if r.ringtype == 4:
-+ if r.cf.type != n_unknown:
-+ if r.cf.type == n_Z:
- P = parent.change_ring(RationalField())
- f = P(self)//P(right)
- CM = list(f)
-@@ -3948,13 +3975,14 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- quo = p_Add_q(quo, temp, r)
- p = pNext(p)
- return new_MP(parent, quo)
-- raise NotImplementedError("Division of multivariate polynomials over non fields by non-monomials not implemented.")
-+ if r.cf.type == n_Znm or r.cf.type == n_Zn or r.cf.type == n_Z2m :
-+ raise NotImplementedError("Division of multivariate polynomials over non fields by non-monomials not implemented.")
-
- cdef int count = singular_polynomial_length_bounded(_self._poly,15)
- if count >= 15: # note that _right._poly must be of shorter length than self._poly for us to care about this call
- sig_on()
- if r!=currRing: rChangeCurrRing(r) # singclap_pdivide
-- quo = singclap_pdivide( _self._poly, _right._poly )
-+ quo = singclap_pdivide( _self._poly, _right._poly, r )
- if count >= 15:
- sig_off()
- f = new_MP(parent, quo)
-@@ -4230,7 +4258,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- iv = NULL
- sig_on()
- if _ring!=currRing: rChangeCurrRing(_ring) # singclap_factorize
-- I = singclap_factorize ( ptemp, &iv , 0)
-+ I = singclap_factorize ( ptemp, &iv , 0, _ring)
- sig_off()
-
- ivv = iv.ivGetVec()
-@@ -4290,10 +4318,10 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- ValueError: polynomial is not in the ideal
- sage: foo = I.complete_primary_decomposition() # indirect doctest
- sage: foo[0][0]
-- Ideal (x2 - 1, x1 - 1) of Multivariate Polynomial Ring in x1, x2 over Rational Field
-+ Ideal (x1 + 1, x2^2 - 3) of Multivariate Polynomial Ring in x1, x2 over Rational Field
-
- """
-- global errorreported, libfac_interruptflag
-+ global errorreported
- if not self._parent._base.is_field():
- raise NotImplementedError("Lifting of multivariate polynomials over non-fields is not implemented.")
-
-@@ -4327,10 +4355,9 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
-
- if r!=currRing: rChangeCurrRing(r) # idLift
- res = idLift(_I, fI, NULL, 0, 0, 0)
-- if errorreported != 0 or libfac_interruptflag != 0:
-+ if errorreported != 0 :
- errorcode = errorreported
- errorreported = 0
-- libfac_interruptflag = 0
- if errorcode == 1:
- raise ValueError("polynomial is not in the ideal")
- raise RuntimeError
-@@ -4561,14 +4588,17 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- else:
- raise TypeError("algorithm %s not supported" % algorithm)
-
-- if _ring.ringtype != 0:
-- if _ring.ringtype == 4:
-+ if _ring.cf.type != n_unknown:
-+ if _ring.cf.type == n_Z:
- P = self._parent.change_ring(RationalField())
- res = P(self).gcd(P(right))
- coef = sage.rings.integer.GCD_list(self.coefficients() + right.coefficients())
- return self._parent(coef*res)
-
-- raise NotImplementedError("GCD over rings not implemented.")
-+ #TODO:
-+ if _ring.cf.type == n_Znm or _ring.cf.type == n_Zn or _ring.cf.type == n_Z2m :
-+ raise NotImplementedError("GCD over rings not implemented.")
-+ #raise NotImplementedError("GCD over rings not implemented.")
-
- if self._parent._base.is_finite() and self._parent._base.characteristic() > 1<<29:
- raise NotImplementedError("GCD of multivariate polynomials over prime fields with characteristic > 2^29 is not implemented.")
-@@ -4586,7 +4616,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- if count >= 20:
- sig_on()
- if _ring!=currRing: rChangeCurrRing(_ring) # singclap_gcd
-- _res = singclap_gcd(p_Copy(self._poly, _ring), p_Copy(_right._poly, _ring))
-+ _res = singclap_gcd(p_Copy(self._poly, _ring), p_Copy(_right._poly, _ring), _ring )
- if count >= 20:
- sig_off()
-
-@@ -4632,14 +4662,15 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- cdef MPolynomial_libsingular _g
- if _ring!=currRing: rChangeCurrRing(_ring)
-
-- if _ring.ringtype != 0:
-- if _ring.ringtype == 4:
-+ if _ring.cf.type != n_unknown:
-+ if _ring.cf.type == n_Z:
- P = self.parent().change_ring(RationalField())
- py_gcd = P(self).gcd(P(g))
- py_prod = P(self*g)
- return self.parent(py_prod//py_gcd)
- else:
-- raise TypeError("LCM over non-integral domains not available.")
-+ if _ring.cf.type == n_Znm or _ring.cf.type == n_Zn or _ring.cf.type == n_Z2m :
-+ raise TypeError("LCM over non-integral domains not available.")
-
- if self._parent is not g._parent:
- _g = self._parent._coerce_c(g)
-@@ -4654,9 +4685,9 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- if count >= 20:
- sig_on()
- if _ring!=currRing: rChangeCurrRing(_ring) # singclap_gcd
-- gcd = singclap_gcd(p_Copy(self._poly, _ring), p_Copy(_g._poly, _ring))
-+ gcd = singclap_gcd(p_Copy(self._poly, _ring), p_Copy(_g._poly, _ring), _ring )
- prod = pp_Mult_qq(self._poly, _g._poly, _ring)
-- ret = singclap_pdivide(prod , gcd )
-+ ret = singclap_pdivide(prod , gcd , _ring)
- p_Delete(&prod, _ring)
- p_Delete(&gcd, _ring)
- if count >= 20:
-@@ -4677,13 +4708,8 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- sage: h.is_squarefree()
- False
- """
-- cdef ring *_ring = self._parent_ring
--
-- if self._parent._base.is_finite() and self._parent._base.characteristic() > 1<<29:
-- raise NotImplementedError("is_squarefree of multivariate polynomials over prime fields with characteristic > 2^29 is not implemented.")
--
-- if(_ring != currRing): rChangeCurrRing(_ring)
-- return bool(singclap_isSqrFree(self._poly))
-+ # TODO: Use Singular (4.x) intrinsics. (Temporary solution from #17254.)
-+ return all([ e == 1 for (f, e) in self.factor() ])
-
- @coerce_binop
- def quo_rem(self, MPolynomial_libsingular right):
-@@ -4740,7 +4766,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- if count >= 15: # note that _right._poly must be of shorter length than self._poly for us to care about this call
- sig_on()
- if r!=currRing: rChangeCurrRing(r) # singclap_pdivide
-- quo = singclap_pdivide( self._poly, right._poly )
-+ quo = singclap_pdivide( self._poly, right._poly, r )
- rem = p_Add_q(p_Copy(self._poly, r), p_Neg(pp_Mult_qq(right._poly, quo, r), r), r)
- if count >= 15:
- sig_off()
-@@ -5181,7 +5207,7 @@ cdef class MPolynomial_libsingular(sage.rings.polynomial.multi_polynomial.MPolyn
- if count >= 20:
- sig_on()
- if _ring != currRing: rChangeCurrRing(_ring) # singclap_resultant
-- rt = singclap_resultant(p_Copy(self._poly, _ring), p_Copy(other._poly, _ring),p_Copy((<MPolynomial_libsingular>variable)._poly, _ring))
-+ rt = singclap_resultant(p_Copy(self._poly, _ring), p_Copy(other._poly, _ring), p_Copy((<MPolynomial_libsingular>variable)._poly , _ring ), _ring)
- if count >= 20:
- sig_off()
- return new_MP(self._parent, rt)
-diff --git a/src/sage/rings/polynomial/multi_polynomial_ring_generic.pyx b/src/sage/rings/polynomial/multi_polynomial_ring_generic.pyx
-index d4ff6fd..3abece4 100644
---- a/src/sage/rings/polynomial/multi_polynomial_ring_generic.pyx
-+++ b/src/sage/rings/polynomial/multi_polynomial_ring_generic.pyx
-@@ -850,7 +850,7 @@ cdef class MPolynomialRing_generic(sage.rings.ring.CommutativeRing):
-
- sage: R.<x> = PolynomialRing(Integers(3), 1)
- sage: R.random_element()
-- -x^2 + x
-+ 2*x^2 + x
-
- To produce a dense polynomial, pick ``terms=Infinity``::
-
-diff --git a/src/sage/rings/polynomial/pbori.pyx b/src/sage/rings/polynomial/pbori.pyx
-index 54e00d9..13b6cdb 100644
---- a/src/sage/rings/polynomial/pbori.pyx
-+++ b/src/sage/rings/polynomial/pbori.pyx
-@@ -1370,6 +1370,7 @@ cdef class BooleanPolynomialRing(MPolynomialRing_generic):
-
- sage: B.<x,y> = BooleanPolynomialRing(2)
- sage: B._singular_() # indirect doctest
-+ polynomial ring, over a field, global ordering
- // characteristic : 2
- // number of vars : 2
- // block 1 : ordering lp
-diff --git a/src/sage/rings/polynomial/plural.pxd b/src/sage/rings/polynomial/plural.pxd
-index eec63df..0f0b659 100644
---- a/src/sage/rings/polynomial/plural.pxd
-+++ b/src/sage/rings/polynomial/plural.pxd
-@@ -5,6 +5,10 @@ from sage.structure.parent cimport Parent
- from sage.libs.singular.function cimport RingWrap
- from sage.rings.polynomial.multi_polynomial_libsingular cimport MPolynomialRing_libsingular
-
-+from sage.libs.singular.decl cimport wFunctionalBuch
-+
-+from sage.libs.singular.decl cimport p_Totaldegree
-+
- cdef extern from *:
- ctypedef long Py_hash_t
-
-diff --git a/src/sage/rings/polynomial/plural.pyx b/src/sage/rings/polynomial/plural.pyx
-index bba5da7..83d632a 100644
---- a/src/sage/rings/polynomial/plural.pyx
-+++ b/src/sage/rings/polynomial/plural.pyx
-@@ -110,14 +110,16 @@ from sage.categories.algebras import Algebras
-
- # singular rings
-
-+from sage.libs.singular.ring cimport singular_ring_new, singular_ring_delete, wrap_ring, singular_ring_reference
-+
-+from sage.libs.singular.singular cimport si2sa, sa2si, overflow_check
-+
-+
- from sage.libs.singular.function cimport RingWrap
-
- from sage.libs.singular.polynomial cimport (singular_polynomial_call, singular_polynomial_cmp, singular_polynomial_add, singular_polynomial_sub, singular_polynomial_neg, singular_polynomial_pow, singular_polynomial_mul, singular_polynomial_rmul, singular_polynomial_deg, singular_polynomial_str_with_changed_varnames, singular_polynomial_latex, singular_polynomial_str, singular_polynomial_div_coeff)
-
- import sage.libs.singular.ring
--from sage.libs.singular.ring cimport singular_ring_new, singular_ring_delete, wrap_ring, singular_ring_reference
--
--from sage.libs.singular.singular cimport si2sa, sa2si, overflow_check
-
- from sage.rings.finite_rings.finite_field_prime_modn import FiniteField_prime_modn
- from sage.rings.integer cimport Integer
-@@ -485,7 +487,7 @@ cdef class NCPolynomialRing_plural(Ring):
- if <Parent>element.parent() is base_ring:
- # shortcut for GF(p)
- if isinstance(base_ring, FiniteField_prime_modn):
-- _p = p_ISet(int(element) % _ring.ch, _ring)
-+ _p = p_ISet(int(element) % _ring.cf.ch, _ring)
- else:
- _n = sa2si(element,_ring)
- _p = p_NSet(_n, _ring)
-@@ -506,7 +508,7 @@ cdef class NCPolynomialRing_plural(Ring):
- # Accepting int
- elif isinstance(element, int):
- if isinstance(base_ring, FiniteField_prime_modn):
-- _p = p_ISet(int(element) % _ring.ch,_ring)
-+ _p = p_ISet(int(element) % _ring.cf.ch,_ring)
- else:
- _n = sa2si(base_ring(element),_ring)
- _p = p_NSet(_n, _ring)
-@@ -991,8 +993,8 @@ cdef class NCPolynomialRing_plural(Ring):
-
- res = pDivide(f._poly,g._poly)
- if coeff:
-- if r.ringtype == 0 or r.cf.nDivBy(p_GetCoeff(f._poly, r), p_GetCoeff(g._poly, r)):
-- n = r.cf.nDiv( p_GetCoeff(f._poly, r) , p_GetCoeff(g._poly, r))
-+ if (r.cf.type == n_unknown) or r.cf.cfDivBy(p_GetCoeff(f._poly, r), p_GetCoeff(g._poly, r), r.cf):
-+ n = r.cf.cfDiv( p_GetCoeff(f._poly, r) , p_GetCoeff(g._poly, r), r.cf)
- p_SetCoeff0(res, n, r)
- else:
- raise ArithmeticError("Cannot divide these coefficients.")
-@@ -1371,8 +1373,6 @@ cdef class NCPolynomial_plural(RingElement):
- if self._parent is not None and (<NCPolynomialRing_plural>self._parent)._ring != NULL and self._poly != NULL:
- p_Delete(&self._poly, (<NCPolynomialRing_plural>self._parent)._ring)
-
--# def __call__(self, *x, **kwds): # ?
--
- def __reduce__(self):
- """
- TEST::
-@@ -1550,10 +1550,10 @@ cdef class NCPolynomial_plural(RingElement):
- sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
- sage: P.inject_variables()
- Defining x, z, y
-- sage: (x^2^30) * x^2^30
-+ sage: (x^2^15) * x^2^15
- Traceback (most recent call last):
- ...
-- OverflowError: Exponent overflow (...).
-+ OverflowError: exponent overflow (65536)
- """
- # all currently implemented rings are commutative
- cdef poly *_p
-@@ -1620,10 +1620,10 @@ cdef class NCPolynomial_plural(RingElement):
- sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
- sage: P.inject_variables()
- Defining x, z, y
-- sage: (x+y^2^30)^10
-+ sage: (x+y^2^15)^10
- Traceback (most recent call last):
- ....
-- OverflowError: Exponent overflow (...).
-+ OverflowError: exponent overflow (327680)
- """
- if type(exp) is not Integer:
- try:
-@@ -2327,7 +2327,7 @@ cdef class NCPolynomial_plural(RingElement):
- """
- cdef ring *_ring = (<NCPolynomialRing_plural>self._parent)._ring
- if(_ring != currRing): rChangeCurrRing(_ring)
-- return bool(pIsHomogeneous(self._poly))
-+ return bool(p_IsHomogeneous(self._poly,_ring))
-
-
- def is_monomial(self):
-@@ -2365,7 +2365,7 @@ cdef class NCPolynomial_plural(RingElement):
- _p = p_Head(self._poly, _ring)
- _n = p_GetCoeff(_p, _ring)
-
-- ret = bool((not self._poly.next) and _ring.cf.nIsOne(_n))
-+ ret = bool((not self._poly.next) and _ring.cf.cfIsOne(_n,_ring.cf))
-
- p_Delete(&_p, _ring)
- return ret
-diff --git a/src/sage/rings/polynomial/polynomial_quotient_ring.py b/src/sage/rings/polynomial/polynomial_quotient_ring.py
-index 01c8c84..1c8003f 100644
---- a/src/sage/rings/polynomial/polynomial_quotient_ring.py
-+++ b/src/sage/rings/polynomial/polynomial_quotient_ring.py
-@@ -599,6 +599,7 @@ class PolynomialQuotientRing_generic(CommutativeRing):
- sage: P.<x> = QQ[]
- sage: Q = P.quo([(x^2+1)])
- sage: singular(Q) # indirect doctest
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-diff --git a/src/sage/rings/polynomial/polynomial_singular_interface.py b/src/sage/rings/polynomial/polynomial_singular_interface.py
-index 4784673..43bad63 100644
---- a/src/sage/rings/polynomial/polynomial_singular_interface.py
-+++ b/src/sage/rings/polynomial/polynomial_singular_interface.py
-@@ -80,6 +80,7 @@ class PolynomialRing_singular_repr:
-
- sage: R.<x,y> = PolynomialRing(CC,'x',2)
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 0 (complex:15 digits, additional 0 digits)
- // 1 parameter : I
- // minpoly : (I^2+1)
-@@ -89,7 +90,8 @@ class PolynomialRing_singular_repr:
- // block 2 : ordering C
- sage: R.<x,y> = PolynomialRing(RealField(100),'x',2)
- sage: singular(R)
-- // characteristic : 0 (real:29 digits, additional 0 digits)
-+ polynomial ring, over a field, global ordering
-+ // characteristic : 0 (real)
- // number of vars : 2
- // block 1 : ordering dp
- // : names x y
-@@ -98,6 +100,7 @@ class PolynomialRing_singular_repr:
- sage: w = var('w')
- sage: R.<x> = PolynomialRing(NumberField(w^2+1,'s'))
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // 1 parameter : s
- // minpoly : (s^2+1)
-@@ -108,6 +111,7 @@ class PolynomialRing_singular_repr:
-
- sage: R = PolynomialRing(GF(127),1,'x')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 127
- // number of vars : 1
- // block 1 : ordering lp
-@@ -116,6 +120,7 @@ class PolynomialRing_singular_repr:
-
- sage: R = PolynomialRing(QQ,1,'x')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-@@ -124,6 +129,7 @@ class PolynomialRing_singular_repr:
-
- sage: R = PolynomialRing(QQ,'x')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-@@ -132,6 +138,7 @@ class PolynomialRing_singular_repr:
-
- sage: R = PolynomialRing(GF(127),'x')
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 127
- // number of vars : 1
- // block 1 : ordering lp
-@@ -140,6 +147,7 @@ class PolynomialRing_singular_repr:
-
- sage: R = Frac(ZZ['a,b'])['x,y']
- sage: singular(R)
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // 2 parameter : a b
- // minpoly : 0
-@@ -151,6 +159,7 @@ class PolynomialRing_singular_repr:
-
- sage: R = IntegerModRing(1024)['x,y']
- sage: singular(R)
-+ polynomial ring, over a ring (with zero-divisors), global ordering
- // coeff. ring is : Z/2^10
- // number of vars : 2
- // block 1 : ordering dp
-@@ -159,7 +168,8 @@ class PolynomialRing_singular_repr:
-
- sage: R = IntegerModRing(15)['x,y']
- sage: singular(R)
-- // coeff. ring is : Z/15
-+ polynomial ring, over a ring (with zero-divisors), global ordering
-+ // coeff. ring is : ZZ/15
- // number of vars : 2
- // block 1 : ordering dp
- // : names x y
-@@ -167,7 +177,8 @@ class PolynomialRing_singular_repr:
-
- sage: R = ZZ['x,y']
- sage: singular(R)
-- // coeff. ring is : Integers
-+ polynomial ring, over a domain, global ordering
-+ // coeff. ring is : integer
- // number of vars : 2
- // block 1 : ordering dp
- // : names x y
-@@ -178,6 +189,7 @@ class PolynomialRing_singular_repr:
- sage: K = R.fraction_field()
- sage: S = K['y']
- sage: singular(S)
-+ polynomial ring, over a field, global ordering
- // characteristic : 5
- // 1 parameter : x
- // minpoly : 0
-@@ -221,6 +233,7 @@ class PolynomialRing_singular_repr:
- EXAMPLES::
-
- sage: PolynomialRing(QQ,'u_ba')._singular_init_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 1
- // block 1 : ordering lp
-diff --git a/src/sage/rings/polynomial/term_order.py b/src/sage/rings/polynomial/term_order.py
-index 17345c0..46bc69a 100644
---- a/src/sage/rings/polynomial/term_order.py
-+++ b/src/sage/rings/polynomial/term_order.py
-@@ -1665,6 +1665,7 @@ class TermOrder(SageObject):
- sage: T.singular_str()
- '(lp(3),Dp(5),lp(2))'
- sage: P._singular_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 127
- // number of vars : 10
- // block 1 : ordering lp
-@@ -1692,6 +1693,7 @@ class TermOrder(SageObject):
- sage: T.singular_str()
- '(a(1:2),ls(2),a(1:2),ls(2))'
- sage: P._singular_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 4
- // block 1 : ordering a
-diff --git a/src/sage/rings/quotient_ring.py b/src/sage/rings/quotient_ring.py
-index 4c2ea8d..da9083a 100644
---- a/src/sage/rings/quotient_ring.py
-+++ b/src/sage/rings/quotient_ring.py
-@@ -1174,6 +1174,7 @@ class QuotientRing_nc(ring.Ring, sage.structure.parent_gens.ParentWithGens):
- sage: R.<x,y> = PolynomialRing(QQ)
- sage: S = R.quotient_ring(x^2+y^2)
- sage: S._singular_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 0
- // number of vars : 2
- // block 1 : ordering dp
-diff --git a/src/sage/rings/quotient_ring_element.py b/src/sage/rings/quotient_ring_element.py
-index 20a1a2d..8e59d6d 100644
---- a/src/sage/rings/quotient_ring_element.py
-+++ b/src/sage/rings/quotient_ring_element.py
-@@ -785,6 +785,7 @@ class QuotientRingElement(RingElement):
- sage: I = sage.rings.ideal.FieldIdeal(P)
- sage: Q = P.quo(I)
- sage: Q._singular_()
-+ polynomial ring, over a field, global ordering
- // characteristic : 2
- // number of vars : 2
- // block 1 : ordering dp
-diff --git a/src/sage/schemes/curves/affine_curve.py b/src/sage/schemes/curves/affine_curve.py
-index 40235a1..72c520d 100644
---- a/src/sage/schemes/curves/affine_curve.py
-+++ b/src/sage/schemes/curves/affine_curve.py
-@@ -729,9 +729,9 @@ class AffineCurve(Curve_generic, AlgebraicScheme_subscheme_affine):
- (Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^2 + 16 defined by
- 24*x^2*ss1^3 + 24*ss1^3 + (a0^3 - 8*a0),
- Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^2 + 16 defined by
-- 24*s1^2*ss0 + (a0^3 - 8*a0)*ss0^2 + (6*a0^3)*s1,
-+ 24*s1^2*ss0 + (a0^3 - 8*a0)*ss0^2 + (-6*a0^3)*s1,
- Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^2 + 16 defined by
-- 8*y^2*s0^4 + (-4*a0^3)*y*s0^3 - 32*s0^2 + (a0^3 - 8*a0)*y)
-+ 8*y^2*s0^4 + (4*a0^3)*y*s0^3 - 32*s0^2 + (a0^3 - 8*a0)*y)
-
- ::
-
-@@ -1471,7 +1471,7 @@ class AffinePlaneCurve(AffineCurve):
- To: Affine Plane Curve over Number Field in a with defining
- polynomial a^2 + 7 defined by x^2 + y^2 + 7
- Defn: Defined on coordinates by sending (t) to
-- (((7*a)*t^2 + (a))/(-7*t^2 + 1), (-14*t)/(-7*t^2 + 1))
-+ ((-7*t^2 + 7)/((-a)*t^2 + (-a)), 14*t/((-a)*t^2 + (-a)))
- """
- para = self.projective_closure(i=0).rational_parameterization().defining_polynomials()
- # these polynomials are homogeneous in two indeterminants, so dehomogenize wrt one of the variables
-diff --git a/src/sage/schemes/curves/projective_curve.py b/src/sage/schemes/curves/projective_curve.py
-index f666231..e62a177 100644
---- a/src/sage/schemes/curves/projective_curve.py
-+++ b/src/sage/schemes/curves/projective_curve.py
-@@ -1537,7 +1537,7 @@ class ProjectivePlaneCurve(ProjectiveCurve):
- To: Projective Plane Curve over Number Field in a with defining
- polynomial a^2 + 1 defined by x^2 + y^2 + z^2
- Defn: Defined on coordinates by sending (s : t) to
-- (s^2 - t^2 : (a)*s^2 + (a)*t^2 : -2*s*t)
-+ ((-a)*s^2 + (-a)*t^2 : s^2 - t^2 : 2*s*t)
- """
- if self.genus() != 0:
- raise TypeError("this curve must have geometric genus zero")
-diff --git a/src/sage/structure/element.pyx b/src/sage/structure/element.pyx
-index 6eaf3ec..1cc469c 100644
---- a/src/sage/structure/element.pyx
-+++ b/src/sage/structure/element.pyx
-@@ -2391,15 +2391,14 @@ cdef class RingElement(ModuleElement):
- ...
- OverflowError: Exponent overflow (2147483648).
-
-- Another example from :trac:`2956`; this should overflow on x32
-- and succeed on x64::
-+ Another example from :trac:`2956` which always overflows
-+ with Singular 4::
-
- sage: K.<x,y> = ZZ[]
- sage: (x^12345)^54321
-- x^670592745 # 64-bit
-- Traceback (most recent call last): # 32-bit
-- ... # 32-bit
-- OverflowError: Exponent overflow (670592745). # 32-bit
-+ Traceback (most recent call last):
-+ ...
-+ OverflowError: exponent overflow (670592745)
-
- """
- if dummy is not None:
-diff --git a/src/sage/tests/french_book/mpoly.py b/src/sage/tests/french_book/mpoly.py
-index 430b9a3..19975ac 100644
---- a/src/sage/tests/french_book/mpoly.py
-+++ b/src/sage/tests/french_book/mpoly.py
-@@ -163,7 +163,7 @@ Sage example in ./mpoly.tex, line 432::
- [Ideal (z^17 - 1, y - 2*z^10, x - 3*z^3) of Multivariate
- Polynomial Ring in x, y, z over Rational Field]
- sage: J.transformed_basis()
-- [z^17 - 1, -2*z^10 + y, -3*z^3 + x]
-+ [z^17 - 1, -2*z^10 + y, -3/4*y^2 + x]
-
- Sage example in ./mpoly.tex, line 534::
More information about the arch-commits
mailing list